期刊文献+

ASYMPTOTIC BEHAVIOR OF LINEAR ADVANCED DIFFERENTIAL EQUATIONS 被引量:2

ASYMPTOTIC BEHAVIOR OF LINEAR ADVANCED DIFFERENTIAL EQUATIONS
在线阅读 下载PDF
导出
摘要 In this article, we consider a general class of linear advanced differential equa- tions, and obtain explicitly sufficient conditions of convergence and exponential convergence to zero. A necessary condition is provided as well. In this article, we consider a general class of linear advanced differential equa- tions, and obtain explicitly sufficient conditions of convergence and exponential convergence to zero. A necessary condition is provided as well.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2015年第3期610-618,共9页 数学物理学报(B辑英文版)
关键词 Advanced differential equations asymptotic behaviors fixed points Advanced differential equations asymptotic behaviors fixed points
  • 相关文献

参考文献23

  • 1Aronson D G, Weinberger H F. Nonlinear diffusion in population genetics, combustion and nerve propaga- tion//Lecture Notes in Mathematics. Vol 446. Berlin: Springer-Verlag, 1975:5-49.
  • 2Bellman R, Cooke K L. Differential-difference equations. New York-London: Academic Press, 1963.
  • 3Berezansky L, Braverman E. On exponential stability of a linear delay differential equation with an oscil- lating coefficient. Appl Math Lett, 2009, 22(12): 1833-1837.
  • 4Berezansky L, Braverman E. On nonoscillation of advanced differential equations with several terms. Abstr Appl Anal, 2011, Art. ID 637142, 14 pp.
  • 5Burton T A, Furumochi T. Fixed points and problems in stability theory for ordinary and functional differential equations. Dynam Systems Appl, 2001, 10(1): 89-116.
  • 6Britton N F. Spatial structures and periodic traveling waves in an integro-differential reaction diffusion population model. SIAM J Appl Math, 1990, 50:1663-1688.
  • 7Cohen M A, Grossberg S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Systems Man Cybernet, 1983, 13:815-826.
  • 8Dubois D M. Extension of the Kaldor-Kalecki model of business cycle with a computational anticipated capital stock. Journal of Organisational Transformation and Social Change, 2004, 1(1): 63-80.
  • 9Gabor H V. Successive approximations for the solution of second order advanced differential equations. Carpathian J Math, 2006, 22(1/2): 57-64.
  • 10Jankowski T. Advanced differential equations with nonlinear boundary conditions. J Math Anal Appl, 2005, 304(2): 490-503.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部