期刊文献+

变体飞行器连续平滑切换LPV控制 被引量:4

Continuous smooth switching LPV control for morphing aircraft
在线阅读 下载PDF
导出
摘要 针对一类翼展可变飞行器的控制问题,提出了一种连续平滑切换线性变参数(linear parameter varying,LPV)控制器的设计方法。将变体飞行器建模成以翼展变形率为时变参数的LPV系统,通过对时变参数进行具有重叠特性的区间划分,设计平滑切换控制器。结合参数依赖的多李雅普诺夫函数和平均驻留时间方法,给出了保证切换LPV系统指数稳定的充分条件。由于考虑了时变参数的渐变特性,使得系统的切换律没有平均驻留时间的限制,降低了结论的保守性。仿真结果表明,运用所设计的控制器,当翼展连续变化时,变体飞行器状态稳定且切换过程平滑,控制性能良好。 To cope with the control problem of a class of variable-span morphing aircraft, a continuous smooth switching linear parameter varying (LPV) controller is proposed. Choosing the rate of span variation as the time-varying parameter, the morphing aircraft is modeled as a LPV system. The smooth switching control ler is designed in the way that the time-varying parameter is partitioned into several subregions with overlaps. Then, a sufficient condition to ensure the switched LPV system's exponential stability is presented by emplo- ying the methods of multiple parameter-dependent Lyapunov functions and average dwell time. Because the character that the time-varying parameter changes gradually is considered, the switching law without constraint on average dwell time is obtained which makes the conclusion less conservative. The simulation result shows that using the proposed controller, the states of morphing aircraft are stable and switch smoothly when the span changes continuously.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第6期1347-1353,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61273083)资助课题
关键词 变体飞行器 线性变参数系统 平滑切换 平均驻留时间 多李雅普诺夫函数 morphing aircraft linear parameter varying (LPV) system smooth switching average dwell time multiple Lyapunov functions
  • 相关文献

参考文献14

  • 1Rodriguez A R. Morphing aircraft technology surveyE[C]//Proc. of the 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007: 1 - 16.
  • 2Lu B, Wu F. Switching LPV control designs using multiple pa- rameter dependent Lyapunov functions [J]. Automatica, 2004, 40(11) :1973 - 1980.
  • 3Lu B, Wu F, Kim S W. Switching LPV control of an F-16 air- craft via controller state reset[J]. IEEE Trans. on Control Sys tems Technology, 2006, 14(2): 267- 277.
  • 4He X, Zhao J. Multiple Lyapunov functions with blending for induced L2-norm control of switched LPV systems and its appli cation to an F-16 aircraft model[J]. Asian Journal of Control, 2014, 16(1): 149-161.
  • 5Chen P C. The design of smooth switching control with applica- tion to V/STOL aircraft dynamics under input and output con- straints[J]. Asian Journal of Control, 2012, 14(2) : 439 - 453.
  • 6Hanifzadegan M, Nagamune R. Smooth switching LPV control- ler design for LPV systems [ J ]. Autornatica, 2014,50 ( 5 ) : 1481 - 1488.
  • 7Song L, Yang J. Smooth switching output tracking control for LPV systems[J]. Asian Journal of Control, 2012, 14(6) : 1710 - 1716.
  • 8Nelson R C. Flight stability and automatic control[M]. WCB/ McGraw Hill, 1998.
  • 9殷明,陆宇平,何真.变体飞行器LPV建模与鲁棒增益调度控制[J].南京航空航天大学学报,2013,45(2):202-208. 被引量:23
  • 10Marcos A, Balas G J. Development of linear-parameter-varying models for aircraft[J]. Journal of Guidance, Control, and Dy- namics, 2004, 27(2) : 218-228.

二级参考文献19

  • 1Rodriguez R A. Morphing aircraft technology survey [C]//45th AIAA Aerospace Sciences Meeting. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2007: 15064-15079.
  • 2Barbarino S, Bilgen O, Ajaj M R, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9):823-877.
  • 3Majji M, Rediniotis K O, Junkins L J. Design of a morphing wing: modeling and experiments [C] ff 2007 A1AA Atmospheric Flight Mechanics Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2007: 124- 132.
  • 4Bowman J, Sanders B, Cannon B, et al. Development of next generation morphing aircraft structures [C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2007: 349- 358.
  • 5Grant T D, Mujahid A, Rick L. Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep[C]//2006 Atmospheric Flight Mechanics Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2006: 1111-1125.
  • 6Hubbard J J. Dynamic shape control of a morphing airfoil using spatially distributed transducers [J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3) : 612-616.
  • 7Whitmer E C, Kelkar G A. Robust control of a morphing airfoil structure[C]/ 2005 American Control Conference. New York, United States.. Institute of Electrical and Electronics Engineers Inc, 2005: 2863-2868.
  • 8Abdulrahim M, Lind R. Control and simulation of a multi-role morphing micro air vehicle [C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2005:6408-6426.
  • 9Valasek J, Tandale D M, Rong J. A reinforcement learning-adaptive control architecture for morphing [C]// AIAA 1st Intelligent Systems Technical Conference. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2004: 29-39.
  • 10Gandhi N, Cooper J, Ward D, et al. A hardware demonstration of an integrated adaptive wing shape and flight control law for morphing aircraft[C]// AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, VA, United States: American Institute of Aeronautics and Astronautics Inc, 2009: 1-25.

共引文献22

同被引文献49

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部