期刊文献+

基于MMTMV方法的多变量时变扰动系统性能评估 被引量:4

Performance Assessment of MIMO System with Time-variant Disturbances Based on MMTMV Method
在线阅读 下载PDF
导出
摘要 工业控制系统性能评估关系到工业生产安全与企业绩效.工业过程扰动频繁且存在时变特性,多变量时变扰动系统缺少统一有效的性能评估方法.本文提出了基于多模型混合时变最小方差(Multi-model mixing time-variant minimum variance,MMTMV)的多变量系统性能评估方法.首先,根据扰动作用起止时间设定混合权重,基于多模型混合的思想利用混合权重与每一时变扰动特性设计多变量MMTMV控制器.然后,利用多变量MMTMV控制器得出各被控变量输出方差,将多变量MMTMV控制器下被控变量的平均方差作为性能评估的基准.最后,本文通过在裂解过程和精馏过程中的控制性能评估应用,验证了多变量MMTMV评估方法的有效性. Performance assessment of industrial processes is related to industrial production safety and benefit. It is widely acknowledged that most of the industry processes are time-varying and influenced by several disturbances. There is no available method to assess the performance of the MIMO system with time-variant disturbances. A multi-model mixing time-variant minimum variance (MMTMV) method of MIMO is proposed in this paper to solve the problem. First, a multivariable MMTMV controller is obtained based on the properties of time-variant disturbances and the weights gained by the action times of disturbances. Then each output variance of the MIMO system employing the multivariable MMTMV controller is derived and the average variance of all controlled variables is utilized as the benchmark to assess the performance of the MIMO system with time-variant disturbances. Finally, the effectiveness of MMTMV is verified in the CPA of a cracking process and a distillation process.
出处 《自动化学报》 EI CSCD 北大核心 2015年第5期928-935,共8页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2012CB720500) 国家自然科学基金(61134007 61222303) 上海市科技攻关项目(12dz1125100) 上海市科学技术委员会(13111103800) 上海市自然科学基金(14ZR1421800) 流程工业综合自动化国家重点实验室开放课题基金(PAL-N201404)资助~~
关键词 多变量 时变扰动 多模型混合 最小方差 Multivariable time-variant disturbances multi-model mixing minimum variance
  • 相关文献

参考文献15

  • 1Harris T J. Assessment of control loop performance. The Canadian Journal of Chemical Engineering, 1989, 67(5): 856-861.
  • 2Huang B, Shah S L. Performance Assessment of Control Loops: Theory and Applications. London, UK: Springer-Verlag, 1999.
  • 3Mazinan A H, Sadati N. Fuzzy predictive control based multiple models strategy for a tubular heat exchanger system. Applied Intelligence, 2009, 33(3): 247-263.
  • 4Aufderheide B, Prasad V, Bequette B W. A comparison of fundamental model-based and multiple model predictive control. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 2001. 4863-4868.
  • 5Wang X, Yue H, Chai T Y. Multivariable direct adaptive pole placement feedforward decoupling controller using multiple models. In: Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China: IEEE, 2002. 852-857.
  • 6李小田,王昕,王振雷,钱锋.一种基于多模型切换的阶梯式广义预测控制算法[J].化工学报,2012,63(1):193-197. 被引量:16
  • 7Ohnishi Y. A switching method of PID controllers based on performance assessment. In: Proceedings of the 2009 ICROS-SICE. Fukuoka, Japan: IEEE, 2009. 1907-1910.
  • 8Ohnishi Y. Design of a switching nonlinear PID control system based on performance assessment. In: Proceedings of the 2011 SICE Annual Conference. Tokyo, Japan: IEEE, 2011. 2619-2623.
  • 9Kuipers M, Ioannou P. Multiple model adaptive control with mixing. IEEE Transactions on Automatic Control, 2010, 55(8): 1822-1836.
  • 10Baldi S, Ioannou P, Mosca E. Multiple model adaptive mixing control: the discrete-time case. IEEE Transactions on Automatic Control, 2012, 57(4): 1040-1045.

二级参考文献36

共引文献37

同被引文献11

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部