期刊文献+

基于直线段上下文的红外与可见光图像匹配 被引量:7

A Matching Algorithm of Infrared and Visible Images Based on Segment Context
在线阅读 下载PDF
导出
摘要 成像设备、所用光谱和拍摄时间等因素的差异给红外与可见光图像匹配带来了较大的困难。考虑到边缘直线段在异源图像中的稳定性,提出一种基于线段上下文的红外与可见光图像匹配方法。首先,采用LSD(line segment detector)算法检测出图像中的直线段,接着按照几何约束规则挑选出关键直线段,并计算它们的交点,将交点与Harris角点一起组成图像特征点;通过计算特征点四象限邻域内线段的得分,得到每条线段对特征点的贡献,在此基础上采用圆形阵列的方式,构建基于线段上下文的特征描述子;最后运用双向匹配策略和RANSAC算法实现红外与可见光图像的匹配。实验结果表明,所提方法能够对灰度差异较大的红外与可见光图像实现精确匹配,并且在鲁棒性和时间效率方面都要优于主流异源图像匹配算法。 Infrared and visible images are usually captured by different sensors, in different spectra and/or at different times, which makes them difficult to match. Considering the stability of the edges, a context-based infrared and visible images matching method are presented. Firstly, LSD (line segment detector) algorithm is used to detect the line segments, then picking out key line segments according to the rules of geometric constraint, and calculating their intersections. The intersections and the Harris corners together constitute the image feature points. By calculating the score of segments in the four-quadrant neighborhood of feature points, the contribution of each segment to the feature points is computed. The context-based feature descriptors are constructed on the basis on the circular array pattern. Finally, bi-directional matching strategy and RANSAC algorithm are used to match the infrared and visible images. Experimental results show that, the proposed algorithm can achieve exact match results in infrared and visible images with great gray difference. In terms of robustness and time efficiency it is better than the classical heterologous image matching algorithms.
出处 《科学技术与工程》 北大核心 2015年第12期210-214,227,共6页 Science Technology and Engineering
基金 国家自然科学基金项目(51005229)资助
关键词 虚拟角点 线段上下文 异源图像匹配 同心圆阵列 RANSAC virtual corners segment context heterologous image matching circular array RANSAC
  • 相关文献

参考文献11

  • 1邹宇华,陈伟海,吴星明,刘中.一种室外非理想光照条件下的立体匹配算法[J].机器人,2012,34(3):344-353. 被引量:7
  • 2倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 3Viola P, Wells Ⅲ W M. Alignment hy maximization of mutual infor- mation. International Journal of Cumputer Vision, 1997; 24 ( 2 ) : 137-154.
  • 4Lowe D G. Distinctive inmge features from scale-in,,+ariant kcyppints. International Journal of Computer Vision,2004 ;60( 2 ) :91-110.
  • 5Bay H, Tuytelaars T, van Gool L. SURF: speeded up robust fea- lures. Proceedings of the 9th European Conference on Computer Vi- sion. Berlin : Springer, 2006 : 404-417.
  • 6Von Gioi R G, Jakuhowicz J, Morel J M, et al. LSD: a fast line seg- ment detector with a false detection control. IEEE Transactions on Pat- lern Analysis and Machine Intelligence, 2010 ; 32 (4) : 722-732.
  • 7Harris C, Stephens M. A combined cnrner and edge detector. Alvey Vision Conference. 1988 : 15-50.
  • 8Lowe D. Object recognition from local scale-invariant fealures. Pro- ceedings of the 1999 International Conference on Computer Vision. Washington, DC : IEEE Compute Society, 1999 : 1 150-1157.
  • 9Fischler M A,Bolles R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated carlog- raphy. Communications of the ACM, 1981 ;24 ( 6 ) :381-395.
  • 10Shechtman E, Irani M. Matching local self-simi|arities across images and videos. Computer Vision and Pattern Recognition, IEEE Confer- ence on. IEEE, 2007 : 1-8.

二级参考文献52

  • 1李海超,张广军.一种基于角点引导的快速立体边缘匹配方法[J].北京航空航天大学学报,2007,33(5):557-560. 被引量:9
  • 2Pollefeys M, Nister D, Frahm J M, et al. Detailed real-time ur- ban 3D reconstruction from video[J]. International Journal of Computer Vision, 2008, 78(2/3): 143-167.
  • 3Man" D, Poggio T. Cooperative computation of stereo dispar- ity[J]. Science, 1976, 194(4262): 283-287.
  • 4Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3): 7-42.
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6Bais A, Sablatnig R, Gu J, et al. Stereo vision based self- localization of autonomous mobile robots[M]//Lecture Notes in Computer Science, vol.4931. Berlin, Germany: Springer- Verlag, 2008: 367-380.
  • 7Fabbri R, Kimia B. 3D curve sketch: Flexible curve-based stereo reconstruction and calibration[C]/flEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 1538-1545.
  • 8Wang Z F, Zheng Z G. A region based stereo matching al- gorithm using cooperative optimization[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 1-8.
  • 9Sanchez M A. A fuzzy approach to solve the stereo correspon- dence problem using phase correlation[D]. E1 Paso, TX, USA: The University of Texas at E1 Paso, 2008.
  • 10Liu X H, Jiang K Y, Lin J Y. Study on a new sine raster generat- ing algorithm for phase-based matching[J]. Applied Mechanics and Materials, 2010, 29-32: 2633-2638.

共引文献88

同被引文献67

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部