期刊文献+

基于增广链修复的最大流求解算法 被引量:14

New algorithm for problem of minimum cut / maximum flow based on augmenting path restoration
在线阅读 下载PDF
导出
摘要 NW小世界网络及BA无标度网络是现实中常见的两种网络,这两种网络中任意两点之间有极大可能存在多条路径,若舍弃饱和增广链并重新寻找增广链,则效率不高,因此针对网络的这一特性提出了一种增广链修复的最大流求解算法。该算法沿最短增广链调整流量后,保留路径上残余的非饱和弧,并用贪心法则选择合适的中继节点修复断开的增广链,提高增广链使用效率。通过对NW小世界网络和BA无标度网络建模仿真,得到并验证了所提算法在这两种网络上的运行速度数倍于Ford-Fulkerson算法且其空间复杂度仅有Dinic算法的一半,因此所提算法能够高效处理更大规模网络流问题,以适应日益膨胀的通信网络和交通运输网络。 The NW( Newman-Watts) small-world network and the BA( Barabasi-Albert) scale-free network are two kinds of common network in reality, these two kinds of networks have a highly possibility existing multiple paths between any pair of vertexes. If abandoning saturated augmented chain and finding augmented chain, the efficiency is not high. The fact above urged a high performance new algorithm described as minimum cut / maximum flow algorithm based on augmenting path restoration to manage these two networks. The new algorithm constantly sought vertexes following greedy heuristics to restore saturated augmenting paths which generated by adjusting flow on shortest paths. By experimental comparisons on the NW small-world network and the BA scale-free network, the new algorithm was several times faster than Ford-Fulkerson algorithm and half as Dinic algorithm in RAM usage, as a consequence, the new algorithm was capable of calculating growing telecommunication and traffic networks.
出处 《计算机应用》 CSCD 北大核心 2015年第5期1246-1249,共4页 journal of Computer Applications
关键词 最大流 增广链 增广链修复 NW小世界网络 BA无标度网络 maximum flow augmenting path augmenting path restoration NW small-world network BA scale-free network
  • 相关文献

参考文献13

  • 1DINIC E A. Algorithms for solution of a problem of maximum flow in networks with power estimation[ J]. Soviet Mathematics: Doklady, 1970, 11(8) : 1277 - 1280.
  • 2EDMONDS J, KARP R M. Theoretical improvements in algorithmic efficiency for network flow problems[ J]. Journal of the ACM, 1972, 19(2) : 248 -264.
  • 3GOLDBERG A V, RAn S. Beyond the flow decomposition barrier [J]. Journal of the ACM, 1998, 45(5): 783 -797.
  • 4BOYKOV Y, KOLMOGOROV V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9) : 1124 - 1137.
  • 5HE Z, HONG B. Dynamically tuned push-relabel algorithm for the maximum flow problem on CPU-GPU-hybrid platforms [ C ]// Pro- ceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing. Piscataway: IEEE, 2010: 1-10.
  • 6NEWMAN M E J, wArrFs D J. Renormalization group analysis of the small-world network model[ J]. Physics Letters A, 1999, 263 (4) : 341 -346.
  • 7TIAN L, WANG J, YAN C, et aL Hemisphere-and gender-related differences in small-world brain networks: a resting-state functional MRI study[ J]. Neuroimage, 2011, 54(1) : 191 - 202.
  • 8JANCKE L, LANGER N. A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG [J]. Journal of Neuropsychology, 2011, 5(2): 178-202.
  • 9BARABASI A L, ALBERT R. Emergence of scaling in random networks[ J]. Science, 1999, 286(5439) : 509 - 512.
  • 10CASTELLANO C, PASTOR-SATORRAS R. Routes to thermody- namic limit on scale-free networks[ J]. Physical Review Letters, 2008, 100(14) : 148701.

同被引文献76

引证文献14

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部