期刊文献+

基于图像处理的小麦腥黑穗病形态学特征的提取方法 被引量:1

The Method of the Morphological Characters of Tilletia Diseases Extraction Based on Image Processing
在线阅读 下载PDF
导出
摘要 基于图像识别是小麦腥黑穗病分类鉴定中正在研究的一种新技术。文章研究了提取小麦腥黑穗病病菌冬孢子形态学特征的图像处理方法。通过获取小麦腥黑穗病显微图像,对显微图像进行图像分割,中值滤波以及试探性扩张矩形等方法获得了病菌显微图像冬孢子区域的内接矩形,提取了基于灰度共生矩阵的纹理特征与形状特征。实验数据显示该方法能有效地提取出小麦腥黑穗病的形态学特征,对后续基于模式识别鉴定小麦腥黑穗病类别具有参考意义。 It is a new technology that identifies species of the Tilletia diseases based on image recognition under study.And Introduce the method of image processing extracts the morphological characters of the Teliospore of the Tilletia diseases. After obtain the Tilletia diseases micrographs, get the inscribed rectangle of the Teliospore in the micrographs of germ by using Image Segmentation, median filter and expanding rectangular tentatively. Extract the textural features and shape feature based on Gray-level Co-occurrence Matrix. The experimental data show that the method could extract morphological characters of the Tilletia diseases effectively, which has reference meaning for identifying the species of the Tilletia diseases based on pattern recognition later.
出处 《电脑与信息技术》 2015年第2期1-3,16,共4页 Computer and Information Technology
基金 2013年质检总局科技计划项目(项目编号:2013IK252)
关键词 小麦腥黑穗病 分类 图像处理 形态学特征 Tilletia diseases classification image processing morphological character
  • 相关文献

参考文献4

  • 1国家质检总局、农业部.中华人民共和国进境植物检疫性布害生物名录[R]. 2007.5.
  • 2David A.ClausL, M.Ed Jernigan.A Fast Method to Determine Co-OccurrenceTexture Features [J]. IEEE TRANSACTIONS ON GEOSCIENCE ANDREMOTE SENSING, 1998,36( I ):298-300.
  • 3HARALICK R M, SHANMUGAM K, DINSTE IN f H. Texture featuresf or image classification [J]. IEEE Transactions on Systems, Man andCybernetics, 1973, 3(6): 610- 621.
  • 4苑丽红,孙爽滋,付丽.灰度共生矩阵检索纹理图像的算法研究[J].计算机科学,2009,36(11):300-302. 被引量:6

二级参考文献11

  • 1杨有,尚晋.一种政府资源档案图像的二值化方法[J].计算机科学,2007,34(3):227-229. 被引量:5
  • 2Yan Ye. Text Image Compression Based on Pattern Matching [D]. University of California, 2002.
  • 3Kia Omid E,Doermann David S, Rosenfeld Azriel, et al. Symbolic Compression and Processing of Document Images[J]. Computer Vision and Image Understanding, 1998,70 (3): 335-349.
  • 4Karadimitriou K, Fenstermacher M. Image compression in medical image databases using set redundancy[C]//IEEE Proceedings of Data Compres-sion Conference, 1997. DCC ' 97. March 1997:445.
  • 5Karadimitriou K, Tyler J M. The eentroid method for compressing sets of similar images [ J]. Pattern Recognition Letters, 1998,19:585-593.
  • 6Lee Jiann-Der, Wan Shu-Yen, Ma Cherng Min, et al. Compression Sets of Similar Images Using Hybrid Compression Model [C]//Proceedings 2002 IEEE International Conference on Multimedia and Expo,2002. ICME '02.
  • 7Inglis S J. Lossless Document Image Compression[D]. University of Waikato, New Zealand, 1999.
  • 8Hough P V C. Method and Means for Recognizing Complex Patterns[P]. US Patent 3,069,654,Dec. 1962.
  • 9Woods R C. Digital Image Processing Second Edition[M]. Beijing: Publishing House of Electronics Industry, 2006 : 532-534.
  • 10Wong I Y,Casey R G,Wahl E M. Document Analysis System. IBM J. Research Develop,1982,26(6) :647-656.

共引文献5

同被引文献31

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部