期刊文献+

求最小期望权值强循环规划解 被引量:2

Solving Strong Cyclic Planning with Minimal Expectation Weight
在线阅读 下载PDF
导出
摘要 现实世界中,动作的执行通常都要耗费一定的代价,且由于外界环境的干扰,动作执行后的结果具有不确定性。针对这一问题,对不确定状态转移系统的动作赋予权值,使用概率分布表示状态转换的随机性,提出了强循环规划解的期望权值,并且设计了求最小期望权值强循环规划解的方法。该方法的主要思想是使用深度优先搜索求出规划问题的所有强循环规划解,再将强循环规划解分别转换成以状态到目标状态的期望权值为变元的线性方程组,最后使用高斯消元法解方程组,从而找出最小期望权值强循环规划解。 In real world,the action's execution often takes a cost.Due to the interference of the external environment,the result of an action's execution is uncertain.To solve this problem,we added weight to the action in system,used a probability distribution to show the stochastic state transition.A method of solving strong cyclic planning with minimal expectation weight was designed based on the proposed concept of expectation weight for strong cyclic planning.Mainly,this method applies depth-first search for getting all strong cyclic plannings.Then,it uses Gaussian elimination to slove the problem after converting the plannings into linear equations with variables in expectation weight.
出处 《计算机科学》 CSCD 北大核心 2015年第4期217-220,257,共5页 Computer Science
基金 国家自然科学基金(61272295 61105039 61202398) 湘潭大学智能计算与信息处理教育部重点实验室 湖南省重点学科建设项目(0812)资助
关键词 不确定规划 概率分布 最小期望权值强循环规划解 深度优先搜索 高斯消元法 Uncertainty planning Probability distribution Strong cyclic planning with minimal expectation weight Depth-first search Gaussian elimination
  • 相关文献

参考文献12

  • 1Kuter U,Nau D,Reisner,et al.Using Classical Planners to Solve Nondeterministic Planning Problems[C]∥Proc.of the 18th Int Conf on Automated Planning and Scheduling.Menlo Park,CA:AAAI press,2008.
  • 2Bertoli P,Cimatti A,Roveri M,et al.Strong planning under partial observability[J].Artificial Intelligence,2006,0(4/5):337-384.
  • 3Cimatti A,Roveri M,Traverso P.Automatic OBDD-based gene-ration of universal plans in nondeterministic domains[C]∥Proc.of the 15th National Conf on Artificial Intelligence.Menlo Park,CA:AAAI Press,1998:875-881.
  • 4Cimatti A,Pistore M,Roveri M,et al.Weak,strong,and strong cyclic planning via symbolic model checking[J].Artificial Intelligence,2003,147(1/2):35-84.
  • 5文中华,黄巍,刘任任,姜云飞.模型检测规划中的状态分层方法[J].软件学报,2009,20(4):858-869. 被引量:14
  • 6Oh J,Meneguzzi F,Sycara K.Probabilistic plan recognition for intelligent information agents[C]∥Proc.ICAART.2011.
  • 7Martín Y E,Moreno M D R,Smith D E.Probabilistic PlanGraph Heuristic for Probabilistic Planning[C]∥Proc.of the Twenty-Fifth AAAI Conference on Artificial Intelligence.2011:1774-1745.
  • 8Fu J,Ng V,Bastani F B,et al.Simple and fast strong cyclic planning for fully-observable nondeterministic planning problems[C]∥Proc.of the 22nd Int Joint Conf on Artificial Intelligence.Menlo Park,CA:AAAI Press,2011:1949-1954.
  • 9周俊萍,殷明浩,谷文祥,孙吉贵.部分可观察强规划中约减观察变量的研究[J].软件学报,2009,20(2):290-304. 被引量:19
  • 10唐杰,文中华,汪泉,黄巍.不确定可逆规划的强循环规划解[J].计算机研究与发展,2013,50(9):1970-1980. 被引量:4

二级参考文献57

  • 1吴康恒,姜云飞.基于模型检测的领域约束规划[J].软件学报,2004,15(11):1629-1640. 被引量:17
  • 2Ghallab M, Nau D, Traverso P. Automated Planning Theory and Practice. Morgan Kaufmann Publishers, 2004.
  • 3Weld DS. Recent advances in AI planning. A1 Magazine, 1999,20(2):93-123.
  • 4Yang Q, Wu KH, Jiang YF. Learning action models from plan examples using weighted Max-SAT. Artificial Intelligence, 2007, 171(2-3):107-143.
  • 5Gil Y. Description logics and planning. AI Magazine, 2005,26(2):73-84.
  • 6Cimatti A, Roveri M. Conforrnant planning via symbolic model checking. Journal of Artificial Intelligence Research, 2000,13: 305-338.
  • 7Cimatti A, Pistore M, Rovveri M, Traverso P. Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence, 2003,147(1-2):35-84.
  • 8Huang W, Wen ZH, Jiang YF, Wu LH. Observation reduction for strong plans. In: Veloso MM, ed. Proc. of the 20th Int'l Joint Conf. on Artificial Intelligence (IJCAI 2007). AAAI Press, 2007. 1930-1935.
  • 9Cimatti A, Roveri M. Conformant planning via model checking and heuristic search. Artificial Intelligence, 2004,159(1-2): 127-206.
  • 10Huang W, Wen ZH, Jiang YF, Chen AX. Comparison between two languages used to express planning goals: CTL and EAGLE. In: Yang Q, Webb G, eds. Proc. of the 9th Pacific Rim Int'l Conf. on Artificial Intelligence (PRICAI 2006). Berlin: Springer-Verlag, 2006. 180-189.

共引文献38

同被引文献16

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部