期刊文献+

Adaptive topology learning of camera network across non-overlapping views 被引量:1

无重叠视域摄像机网络拓扑自适应学习方法(英文)
在线阅读 下载PDF
导出
摘要 An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is judged by their cross-correlation function, which is also used to calculate their transition time distribution. The mutual information of the connected node pair is employed for transition probability calculation. A false link eliminating approach is proposed, along with a topology updating strategy to improve the learned topology. A real monitoring system with five disjoint cameras is built for experiments. Comparative results with traditional methods show that the proposed method is more accurate in topology learning and is more robust to environmental changes. 提出一种自适应拓扑学习方法来无监督地学习摄像机网络的拓扑.利用混合高斯算法建立节点模型,并通过计算节点对的互关联函数得到该对节点的连通性以及连通节点对的转移时间分布.利用交互信息计算连通的节点对的转移概率.对学习到的拓扑结构,提出虚假连接排除策略以及拓扑更新策略对其进行优化.为了测试所提出算法的有效性,搭建了由5个不包含重叠视域的摄像机组成的监控系统进行试验.通过与已有算法的对比,结果表明该算法可以更准确地学习监控网络的拓扑,并对环境变化有一定的鲁棒性.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期61-66,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.60972001) the Science and Technology Plan of Suzhou City(No.SS201223)
关键词 non-overlapping views mutual information Gaussian mixture model adaptive topology learning cross-correlation function 无重叠视域 交互信息 混合高斯模型 自适应拓扑学习 互关联函数
  • 相关文献

参考文献1

二级参考文献15

  • 1Kettnaker V, Zabih R. Bayesian multi-camera surveillance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 253-259.
  • 2Makris D, Ellis T, Black J. Bridging the gaps between cameras. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wash- ington D.C., USA: IEEE, 2004. 205-210.
  • 3Pasula H, Russell S J, Ostland M, Ritov Y. Tracking many objects with many sensors. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers Inc, 1999. 1160-1171.
  • 4Porikli F, Divakaran A. Multi-camera calibration, object tracking and query generation. In: Proceedings of the IEEE International Conference on Multimedia and Expo. Baltimore, USA: IEEE, 2003. 653-656.
  • 5Javed O, Rasheed Z, Shafique K, Shah M. Tracking across multiple cameras with disjoint views. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 952-957.
  • 6Song B, Roy-Chowdhury A K. Stochastic adaptive tracking in a camera network. In: Proceedings of the llth IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8.
  • 7Marinakis D, Dudek G, Fleet D J. Learning sensor network topology through Monte Carlo expectation maximization. In: Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 4581-4587.
  • 8Niu C W, Grimson E. Recovering non-overlapping network topology using fax-field vehicle tracking data. In: Proceedings of the 18th IEEE International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 944-949.
  • 9Faxrell R, Davis L S. Decentralized discovery of camera network topology. In: Proceedings of the 2nd ACM/IEEE International Conference on Distributed Smart Cameras. Stanford, USA: IEEE, 2008. 1-10.
  • 10Zhang L, Li Y, Nevatia R. Global data association for multiobject tracking using network flows. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.

共引文献8

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部