期刊文献+

大腹园蛛主壶腹腺丝基因的筛选及序列分析 被引量:1

Screen and Sequence Analysis of Major Ampullate Spidroin Gene-1 from Araneus Ventricosus
在线阅读 下载PDF
导出
摘要 为研究蛛丝蛋白编码基因和蛋白的组成结构模式、进化,并为蛛丝仿生提供更多的基因资源,运用3D/PCR(three-dimensional polymerase chain reaction)技术对大腹园蛛(A.ventricosus)Fosmid基因组文库进行主壶腹腺丝(MaSp1)编码基因的筛选,并对部分序列进行分析.通过筛选实验室前期构建的Fosmid文库获得含有MaSp1基因的阳性克隆Av11-19-5,通过shotgun测序得到MaSp1部分基因序列MaSp1RC.MaSp1RC长786bp,编码的262个氨基酸(AvMaSp1RC)可划分为保守的C端非重复区(CT)和重复区(Rep).Rep主要由poly-Ala,Glyx和GlyGlyx等模块组成,Ala和Gly含量占总氨基酸的78%;CT中参与形成离子键的氨基酸及helix 4上的疏水模块高度保守.研究结果为蛛丝蛋白二聚化及仿生学研究提供了更多的基因资源. To research the spider silk protein coding gene architecture,protein modules and supply different kinds of gene resources for bio-mimicing spider silk,major ampullate spidroin gene-1(MaSp 1)gene is screened from an Araneus ventricosus(A.ventricosus)Fosmid gene library by 3D/PCR(three-dimensional polymerase chain reaction)technology and partial MaSp1 sequence is analyzed.By screening the Fosmid gene library,apositive clone containing the MaSp1 gene is obtained,termed Av11-19-5,which is now being sequenced,and partial MaSp1 coding gene,MaSp1 RC,has already been found out.MaSp1 RC is 786 bp in size and encodes 262 amino acids which can be divided into non-repetitive C terminal domain(CT)and repetitive domain(Rep).The Rep is mainly composed of poly-Ala,Glyxand GlyGlyx modules,in which Ala and Gly content is about 78%.In CT domain,amino acids involved in forming salt bridge and hydrophobic domain in elix 4are highly conserved.The study result supplies a new biomimetic gene resource,and gives a basis for working with spider silk protein coding gene architecture and dimerization.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期53-59,共7页 Journal of Donghua University(Natural Science)
基金 国家"八六三"高技术研究发展计划资助项目(2006AA03Z451) 国家自然科学基金资助项目(31070698) 上海市基础研究重点资助项目(10JCl400300) 教育部高等学校博士学科点专项科研基金资助项目(20120075110007)
关键词 大腹园蛛 主壶腹腺丝蛋白 3D/PCR技术 序列分析 Araneus ventricosus major ampullate spidroin 3D/PCR technology sequence analysis
  • 相关文献

参考文献28

  • 1KLUGE J A, RABOTYAGOVA O, LEISK G G, et al. Spider silks and their applications[J]. Trends Biotechnol, 2008, 26 (5) : 244-251.
  • 2HEIM M, KEERL D, SCHEIBEI. T. Spider silk: From soluble protein to extraordinary fiber[J]. Angew Chem Int Ed Engl, 2009, 48(20): 3584-3596.
  • 3RISING A, WIDHE M, JOHANSSON J, et a[. Spider silk proteins: Recent advances in recombinan't production, structure function relationships and biomedical appllcations[J]. Cell Mol Life Sci, 2011, 68(2): 169-184.
  • 4WIDHE M, JOHANSSON J, HEDHAMMAR M, et al. Invited review current progress and limitations of spider silk for biomedical applications [J]. Biopolymers, 2012, 97 (6): 468-478.
  • 5GOSLINE J M, GUERETTE P A, ORTLEPP C S, et al. The mechanical design of spider silks: From fibroin sequence to mechanical function [J]. J Exp Biol, 1999, 202 ( 23): 3295 -3303.
  • 6LEWIS R V. Spider silk: Ancient ideas for new biomaterials [J]. ChemRev, 2006,106(9): 3762-3774.
  • 7XU M, LEWIS R V. Structure of a protein superfiber: Spider dragline silk [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87 (18): 7120-7124.
  • 8HINMAN M B, LEWIS R V. Isolation of a clone encoding a second dragline silk fihroin: Nephila elavipes dragline silk is atwo-protein fiber [J]. J Biol Chem, 1992, 267 (27): 19320-19324.
  • 9HAYASHI C Y, LEWIS R V. Molecular architecture and evolution of a modular spider silk protein gene[J]. Science, 2000, 287(5457) : 1477-1479.
  • 10MOTRIUK S D, SMITH A, HAYASHI C Y, et al. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins[J]. Biomacromolecules, 2005, 6(6): 3152-3159.

二级参考文献23

  • 1Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. 2007. Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes[J]. PLoS ONE, 2(6): e514.
  • 2Davis MA, Hancock DD, Besser TE, Call DR. 2003. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7[J]. J Clin Microbiol, 41(5): 1843-1849.
  • 3Henry JM, Raina AK, Ridgway RL. 1990. Isolation of high-molecular-weight DNA from insects[J]. Anal Biochem, 185(1): 147-150.
  • 4Kotchoni SO, Gachomo EW. 2009. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants[J]. Mol Biol Rep, 36(6): 1633 - 1636.
  • 5Sambrook J, Russell DW. 2005. Molecular Cloning M]. 3^rd ed. New York: Cold Spring Harbor Laboratory Pr.
  • 6Takemon Y, Yamamoto A, Nakashima M, Tanida K, Kishi M, Kato M. 2006. Isolation of sperm vesicles from adult male mayflies and other insects to prepare high molecular weight genomic DNA samples[J]. Mol Biol Rep, 33(1): 65-70.
  • 7Wu Q, Chen M, Buchwald M, Phillips RA. 1995. A simple, rapid method for isolation of high quality genomie DNA from animal tissues[J]. Nucl Acids Res, 23(24): 5087-5088.
  • 8HU X, VASANTHAVADA K, KOHLER K, et al. Molecular mechanisms of spider silk[J]. Cell Mol Life Sci, 2006, 63 (17) : 1986-1999.
  • 9KLUGE J A, RABOTYAGOVA O, LEISK G G, et al. Spider silks and their applications[J]. Trends Biotechnol, 2008, 26 (5): 244-251.
  • 10LEWIS R. Unraveling the weave of spider silk[J]. Bioscience, 1996, 46(9): 636-638.

共引文献4

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部