期刊文献+

基于ⅡR陷波器应对频率失调的窄带ANC系统新结构 被引量:5

New Structure for Dealing with Frequency Mismatch of Narrowband ANC System Based on ⅡR Notch Filter
在线阅读 下载PDF
导出
摘要 窄带主动噪声控制(ANC)系统中往往存在频率失调(FM)问题,传统的频率失调补偿(FMC)系统能应对一定程度的FM,但当噪声信号非平稳或失调量较大时,系统将无法工作.针对此问题,本文提出一种带有频率估计的窄带ANC系统新结构,其采用声学和非声学两路传感器获取参考信号,引入可变极半径及平滑下降(PG)算法构建ⅡR陷波器,完成参考信号的频率估计,通过一阶FIR滤波器实现幅值和相位的调节.仿真表明,在保证合理的稳态误差情况下,与传统的FMC系统相比,新系统能够应对较大的FM,且具有良好的收敛和追踪性能. Since the narrow band active noise control( ANC) system alw ays gives rise to frequency mismatch( FM),the traditional frequency mismatch compensation( FMC) technique can cope w ith small FM,but is unable to deal w ith nonstationary noise signals or large FM. In order to solve the above problem,a new ANC structure w ith a frequency estimator is first introduced,w hose inputs are measured by both the acoustic and non-acoustic sensors. The IIR notch filter based on plain gradient( PG) algorithm is employed as the frequency estimator,and the adjustment of amplitude and phase of secondary source is achieved by a first-order FIR filter updated by filtered-x LM S( FXLM S) or RLS( FXRLS) algorithm. Simulations indicated that the new system,in the condition of ensuring reasonable steady-state error,compared with the traditional FM C system,could effectively handle larger FM and revealed fine convergence and tracking performance.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第1期129-134,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61171183) 2012航天支撑基金(No.01320214) 中央高校基本科研业费专项资金(No.HIT.IBRSEM.201306)
关键词 窄带主动噪声控制 频率失调 非平稳噪声 ⅡR陷波器 可变极半径 narrowband active noise control frequency mismatch non-stationary noise IIR notch filter variable pole radius
  • 相关文献

参考文献2

二级参考文献26

  • 1林振声.概周期微分方程与积分流形.上海:上海科学技术出版社,1982.166-219.
  • 2Xiao Y, Tadokoro Y, Kobayashi Y. A new memoryless non- linear gradient algorithm for a second-order adaptive IIR notch filter and its performance analysis. IEEE Transactions on Circuits and Systems H: Analog and Digital Signal Processing, 1998, 45(4): 462-472.
  • 3Xiao Y, Takeshita Y, Shida K. Steady-state analysis of a plain gradient algorithm for a second-order adaptive IIR notch filter with constrained poles and zeros. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2001, 48(7): 733-740.
  • 4Karimi-Ghartemani M, Ziarani A K. Performance characterization of a nonlinear system as both an adaptive notch filter and a phase-locked loop. International Journal of Adaptive Control Signal Process, 2004, 18(1): 23-53.
  • 5McNamara D M, Ziarani A K, Ortmeyer T H. A new technique of measurement of nonstationary harmonics. IEEE Transactions on Power Delivery, 2007, 22(1): 387-395.
  • 6Regalia P A. An improved lattice-based adaptive IIR notch filter. IEEE Transactions on Signal Processing, 1991, 39(9): 2124-2128.
  • 7Bodson M, Douglas S C. Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency. Automatica, 1997, 33(12): 2213-2221.
  • 8Hsu L, Ortega R, Damm G. A globally convergent frequency estimator. IEEE Transactions on Automatic Control, 1999, 44(4): 698-713.
  • 9Mojiri M, Bakhshai A R. An adaptive notch filter for frequency estimation of a periodic signal. IEEE Transactions on Automatic Control, 2004, 49(2): 314-318.
  • 10Mojiri M, Karimi-Ghaxtemani M, Bakhshai A. Time- domain signal analysis using adaptive notch filter. IEEE Transactions on Signal Processing, 2007, 55(1): 85-93.

共引文献42

同被引文献28

  • 1GLOVER J R. Adaptive noise canceling applied to sinusoidal interferences[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1977, 25(6): 484-491.
  • 2ELLIOTT S J and NELSON P A. Active noise control[J]. IEEE Signal Processing Magazine, 1993, 10(4): 12-35.
  • 3KUO S M and MORGAN D R. Active Noise Control System: Algorithms and DSP Implementations[M]. New York: John Wiley & Sons, 1996: 135-140.
  • 4YUAN Y, KAPSOKAVATHIS N S, CHEN K, et al. Active noise control system[P]. U.S. Patent 5359662, 1994-10-25.
  • 5KUO S M and PUVVALA A B. Effects of frequency separation in periodic active noise control systems[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(5): 1857-1866.
  • 6XIAO Y, IKUTA A, MA L, et al. Stochastic analysis of the FXLMS-based narrowband active noise control system[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(5): 1000-1014.
  • 7XIAO Y, MA L, KHORASANI K, et al. A new robust narrowband active noise control system in the presence of frequency mismatch[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2189-2200.
  • 8XIAO Y. A new efficient narrowband active noise control system and its performance analysis[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(7): 1865-1874.
  • 9HUANG B, XIAO Y, SUN J, et al. A variable step-size FXLMS algorithm for narrowband active noise control[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(2): 301-312.
  • 10CHANG D C and CHU F T. Feedforward active noise control with a new variable tap-length and step-size filtered-X LMS algorithm[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(2): 542-555.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部