期刊文献+

以PVP纳米纤维为模板采用原子层沉积法制备MgxZn(1-x)O纳米纤维及其光学性质研究 被引量:1

Preparation of Mg_xZn_(1-x)O Nanofibers Using PVP Nanofibers as Templates by Atom Layer Deposition and Their Optical Properties
在线阅读 下载PDF
导出
摘要 采用静电纺丝方法制备聚乙烯吡咯烷酮(PVP)纳米纤维,并以其为模板采用原子层沉积(ALD)方法制备不同Mg掺杂浓度的MgxZn1-xO纳米纤维。研究了不同Mg掺杂浓度对复合纳米纤维结构和光学性质的影响。利用场发射扫描电子显微镜(FESEM)、光致发光(PL)和紫外-可见光(UV-Vis)吸收谱对样品测试并进行表征分析。结果表明,Mg元素的掺入并没有改变ZnO纳米纤维的形貌,所有样品的表面形貌极其相似,只是掺杂后纤维直径有所增大;随着Mg掺杂浓度的增加吸收边逐渐发生蓝移,表明所制备MgxZn1-xO纤维的带隙具有可调节性。与此同时,在PL谱中可以观察到样品的紫外(UV)发光峰从377nm移动至362nm,且与不掺杂的样品相比,MgxZn1-xO纳米纤维的UV发光强度明显增强。通过这种方法可以合成组分可控的MgxZn1-xO纳米纤维。在ZnO中掺入Mg元素可以有效地提高ZnO-PVP纳米纤维的禁带宽度以及UV发射强度。 In the present paper,MgxZn1-xO nanofibers with different doping concentration were prepared by atom layer deposition(ALD)using polyvinyl pyrrolidone(PVP)nanofibers as template,which were synthesized by electrospinning.The influence of different Mg doping concentration on the structure and optical properties of composite nanofibers was investigated.The samples were characterized by field emission scanning electron microscopy(FESEM),ultraviolet visible(UV-Vis)absorption spectroscopy and photoluminescence(PL)spectra.The doping of Mg did not change the morphologies of ZnO nanofibers,the morphologies of all the samples were very similar while the diameter of MgxZn1-xO-PVP composite nanofibers became larger after doping.With the increase in the Mg doping concentration,the absorption edge shifted to larger energy side,revealing the band gap tenability of MgxZn1-xO nanofibers.Meanwhile,a significant blue shift of the UV emission peak from 377 to 362nm was observed in PL spectra.Compared with ZnO-PVP composite nanofibers,the UV emission intensity of MgxZn1-xO-PVP composite nanofibers was much stronger.Component control MgxZn1-xO nanofibers can be synthesized by this method.The doping of Mg elements in ZnO can effectively improve the band gap of ZnO-PVP nanofibers and the intensity of UV emission.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第12期3197-3200,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(61076039,61204065,61205193,61307045) 高等学校博士学科点专项科研基金项目(20112216120005) 吉林省科技发展计划项目(20121816,201201116) 高功率半导体激光国家重点实验室基金项目(9140C310101120C031115)资助
关键词 Mg掺杂ZnO PVP 纳米纤维 静电纺丝 ALD MgxZn1-xO PVP Composite nanofibers Electrospinning ALD
  • 相关文献

参考文献1

二级参考文献18

  • 1Bhattacharyya S R, Majumder S. Functional Materials Letters, 2010, 3 (2): 111.
  • 2Zhou J C, Li L, Rong L Y, et al. International Journal of Modem Physics B, 2011, 25(20) : 2741.
  • 3Pearton S J, Lim W T, Wright J S, et al. Journal of Electronic Materials, 2008, 37(9) : 1426.
  • 4Mahajan J R. International Journal of Modern Physics B, 2011, 25(31) : 4294.
  • 5WANG Yu-xin, SUN Jing-chang, ZHENG Ya-ru, et al . Journal of Optoelectronics ~ Laser , 2012, 23 (11): 2132.
  • 6GAO Li, ZHANG Jian-min . Acta Physica Sinica , 2010, 59(2): 1263.
  • 7JIN Xi-lian, LOU Shi-yun, KONG De-guo, et al . Acta Physica Sinica , 2006, 55 (9): 4809.
  • 8Yoshino K, Oyama S, Yoneta M. J Mater Sci: Mater Electron, 2008, 19: 203.
  • 9Vashaei Z, Minegishi T, Suzuki H, et al. J. AppL Phys. , 2005, 98: 4911.
  • 10Cho J Y, Kim I K, Jung I O, et al. J. Eleetroceram, 2009, 23: 442.

同被引文献17

  • 1Wang Z L, Song J. Science, 2006, 312: 242.
  • 2Law M, Greene L E, Johnson J C. Nature Materials, 2005, 4: 455.
  • 3Fang F, Zhao D X, Li B H. Applied Physics Letters, 2008, 93 (3): 233115.
  • 4Li Yongfeng, Deng Rui, Lin Weinan. Physical Review B, 2013, 87: 155151.
  • 5Jambois O. J. Phys. D. Appl. Phys., 2012, 45: 075002.
  • 6Kohan A F, Ceder G, Morgan D. Phys. Rev. B, 2000, 61(22): 15019.
  • 7Limpijumnong S, Zhang S B, Wei S H, et al. Physical Review Letters, 2004, 92: 155504.
  • 8Lai Ying-Yu, Lan Yu-Pin, Lu Tien-Chang. Light: Science & Applications, 2013, 2: e76.
  • 9Chu S, Wang G P, Zhou W H. Nature Nanotechnology, 2011, 6: 506.
  • 10Wu C X, Zhou M, Zhang S G. Nanoscience and Nanotechnology Letters, 2013, 5: 174.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部