期刊文献+

农业大数据应用体系架构和平台建设 被引量:52

Architecture and platform construction of big data application in agriculture
在线阅读 下载PDF
导出
摘要 农业数据具有容量大、关联性强、复杂多变等特点。大数据技术能从庞大的数据集合中寻找、挖掘有价值的数据和知识。推动大数据技术在农业领域的实践和应用,对把握农业信息内在联系和规律意义重大。首先阐述了大数据的基本内涵和农业大数据概念与特点;然后从服务、管理、应用、技术、资源5个关键环节分析设计了农业大数据SMART应用体系架构,重点分析了构建体系的关键技术、重点资源与主要应用领域;最后在此基础上,设计了一个农业大数据智能分析平台,并详细分析了平台的总体架构、功能设计及技术实现。 Agricultural data have the characteristics of large capacity, strong affinity, complex, etc. Big data technology can mine valuable information and knowledge from large data sets. Promoting the practice and application of big data technology in agriculture is significant to grasp the internal relations and rules of agricultural information. This paper first described the basic concepts of big data, as well as the concept and feature of agricultural big data. Then, the SMART application architecture of agricultural big data was designed from five key areas, including service, management, application, technology and resource. Among them, the key technologies to build the system, focus resources and main application areas were analyzed. Finally, based on the above basises, a platform for intelligent analysis of agricultural big data was built, and the overall platform architecture, functional design and technology were discussed in detail.
出处 《广东农业科学》 CAS CSCD 北大核心 2014年第14期173-178,共6页 Guangdong Agricultural Sciences
基金 广州市科技计划项目电子商务发展专项(穗科信字[2012]232号) 广州市天河区科技计划项目(201303FT196)
关键词 农业 大数据 架构体系 智能分析平台 agriculture big data architecture intelligent analysis platform
  • 相关文献

参考文献7

二级参考文献285

  • 1托夫勒.第三次浪潮[M].北京:中信出版社,2006.
  • 2Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: IEEE Computer Society, 2010.97-104. [doi: 10.1109/SKG.2010.18].
  • 3Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaecapietra S, Teubner J, Kitsuregawa M, Leger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99-110. [doi: 10.1145/ 1739041.1739056].
  • 4Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299-310. [doi: 10.1145/1555349.1555384].
  • 5Hoefler T, Lumsdaine A, Dongarra J. Towards; efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240-249. [doi: 10.100'7/978-3-642-03770-2_30].
  • 6Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494-505.
  • 7Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245-254. [doi: 10.1109/CLUSTER.2010.30].
  • 8Polo J, Carrera D, Becerra Y, Torres J, Ayguad6 E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the 1EEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373-380. [doi: 10.1109/NOMS.2010.5488494].
  • 9Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in heterogeneous environments. In: Draves R, van Renesse R, eds. Proc. of the ODSI. Berkeley: USENIX Association, 2008.29-42.
  • 10Xie J, Yin S, Ruan XJ, Ding ZY, Tian Y, Majors J, Manzanares A, Qin X. Improving MapReduce performance through data placement in heterogeneous Hadoop clusters. In: Taufer M, Rfinger G, Du ZH, eds. Proc. of the Workshop on Heterogeneity in Computing (IPDPS 2010). Atlanta: IEEE Press, 2010. 1-9. [doi: 10.1109/IPDPSW.2010.5470880].

共引文献3323

同被引文献492

引证文献52

二级引证文献463

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部