期刊文献+

基于PCA降维的HOG与LBP融合的行人检测 被引量:19

Human detection based on HOG-PCA and LBP characteristics
在线阅读 下载PDF
导出
摘要 行人检测是计算机视觉中十分重要而又有挑战的研究方向。针对梯度方向直方图(HOG)特征描述子的局限性,如冗余信息多、容易造成误检和漏检等,为了进一步提高行人检测的准确率和速度,提出多特征融合的行人检测算法,利用主成分分析(PCA)对HOG进行降维再与局部二值模式(LBP)特征进行融合,使用支持向量机(SVM)进行分类。在INRIA行人数据库上进行测试,实验表明该算法提高了识别率,加快了训练和检测的速度。 Human detection is an important but challenging task in computer vision. For the limitation of HOG character descriptor, such as more redundant information ,likely to cause false detection and missed and so on. In order to improve the accuracy and speed of the human detection further, this paper proposes a human detection algorithm based on multi-features fusion, using PCA to reduce the dimension of raw HOG and combination it with LBP feature, using SVM algorithm for feature learning. The experimental results on INRIA data show that this algorithm training and detection speed. increases the recognition rate of human detection, the
出处 《信息技术》 2015年第2期101-105,共5页 Information Technology
关键词 行人检测 PCA HOG LBP human detection PCA HOG LBP
  • 相关文献

参考文献9

  • 1Viola P,Jones M J. Robust real-time face detection[ J]. International journal of computer vision ,2004,57 (2) : 137 - 154.
  • 2Dalai N ,Triggs B. Histograms of oriented gradients for human detec- tion[ C ]//Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, 2005: 886- 893.
  • 3Ojala T,Pietikginen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pat- tern recognition, 1996,29( 1 ) :51 -59.
  • 4Wu B, Nevatia R. Detection of multiple, partially occluded humans in a "single image by bayesian combination of edgelet part detectors [ C]//Computer Vision,2005. ICCV 2005.Tenth IEEE International Conference on, IEEE,2005:90 - 97.
  • 5Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling [ C ]//Computer Vision ,2009 IEEE 12th Interna- tional Conference on, IEEE ,2009:32 - 39.
  • 6Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002,24(7) :971 -987.
  • 7Wang P,Shen C, Barnes N, et al. Fast and robust object detection using asymmetric totally corrective boosting [ J ]. Neural Networks and Learning Systems, IEEE Transactions on,2012,23 ( 1 ) :33 - 46.
  • 8Kobayashi T, Hidaka A, Kurita T. Selection of histograms of oriented gradients features for pedestrian detection [ C]//Neural Information Processing, Springer,2008 : 598 - 607.
  • 9Lu W, Little J J. Simultaneous tracking and action recognition using the pca-hog descriptor[ C ]//Computer and Robot Vision,2006. The 3rd Canadian Conference on,IEEE,2006.

同被引文献105

引证文献19

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部