期刊文献+

带积分边界条件的奇异二阶边值问题的正解

Positive Solutions for Singular Second-order Boundary Value Problems with Integral Boundary Conditions
在线阅读 下载PDF
导出
摘要 研究一类带积分边界条件的奇异二阶边值问题,通过计算给出齐次边界条件下边值问题的格林函数及性质.在满足假设条件下,利用锥上的不动点定理,得到了参数λ的精确区间,使参数λ取区间中任意值均能确保边值问题至少存在1个正解. In this article,a singular second-order boundary value problem with integral boundary conditions is investigated.The Green's function for boundary value problem subject to homogeneous boundary conditions and its properties are obtained.By using the fixed point theory on cones,an explicit interval forλis derived such that for anyλin this interval,the existence of at least one positive solution to the boundary value problem is guaranteed.
出处 《河北师范大学学报(自然科学版)》 CAS 2015年第1期11-18,共8页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11271106) 河北省自然科学基金(A2012506010)
关键词 正解 积分边界条件 格林函数 不动点定理 positive solution integral boundary condition Green's function fixed point theory
  • 相关文献

参考文献8

  • 1HAN Xiaoling. Positive Solutions for a Three-point Boundary Value Problem[J]. Nonlinear Anal,2007,66: 679-688.
  • 2ABDELKADER B. Second-order Boundary Value Problems with Integral Boundary Conditions[J]. Nonlinear Anal,2009, 70:364-371.
  • 3ABDELKADER B, SIDI M,NAWAL A M, et al. Third Order Differential Equations with Integral Boundary Conditions [J]. Nonlinear Anal, 2009,71 : 736-1743.
  • 4JOHN R,GRAEF J R B. Third Order Boundary Value Problems with Nonlocal Boundary Conditions[J]. Nonlinear Anal, 2009,71 : 1542-1551.
  • 5ZHANG Xuemei,GE Weigao. Symmetric Positive Solutions of Boundary Value Problems with Integral Boundary Condi- tions[J]. Appl Math Comput,2012,219:3553-3564.
  • 6ZHANG Xuemei, FENG Meiqiang, GE Weigao. Existence Result of Seeond-order Differential Equations with Integral Boundary Conditions at Resonance[J]. J Math Anal Appl, 2009,353 : 311-319.
  • 7GUO Dajun, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones[M]. New York: Academic Press, 1988.
  • 8DEIMLING K. Nonlinear Functional Analysis[ M]. Berlin: Springer, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部