期刊文献+

基于改进遗传算法的狭窄空间路径规划 被引量:36

Path planning in narrow space by improved genetic algorithm
在线阅读 下载PDF
导出
摘要 针对室内或地下等狭窄而复杂环境下的移动机器人全局路径规划,提出了一种基于Dijkstra算法的改进遗传算法路径规划策略,以解决传统遗传算法在狭窄环境下难以有效初始化的问题。首先借助Dijkstra算法得出基准路径,然后以此基准路径为基础,通过改进的编码方式与搜索空间进行初始种群的编码,最后通过遗传算法获得最优路径。提出了全局通行度和路径安全度的概念,用来评估当机器人不可视为质点时的环境状态与路径优劣。仿真实验结果表明,与传统遗传算法和人工势场法相比,本方法在保证路径距离较短的情况下,能使路径安全度提高50%以上,或者将时间复杂度降低一半以上,表明了所提方法的实用性和有效性。 To solve the global path planning problem in narrow and complex environments, the paper presented a new GA- based strategy. The initialization of path planning using the traditional GA in narrow space was difficult. First, base path search used Dijkstra algorithm; then, initial population coding by a new genetic code scheme and improved searching spaces; finally, path optimization used genetic algorithm. For the robots could not be scaled as points in narrow space, the paper proposed the global pass degree and path safety to evaluate the environment and the path. Simulation results show that compared with traditional GA and artificial potential field, this method ensures the path distance is short, increases path safety by more than 50% or reduces the time complexity by more than half. Results demonstrate that the practicality and effectiveness of the proposed method.
出处 《计算机应用研究》 CSCD 北大核心 2015年第2期413-418,共6页 Application Research of Computers
基金 国家博士后科学基金资助项目(20090460211) 国家自然科学基金资助项目(50904007) 中央高校基本科研业务费资助项目(FRF-TP-12-055A)
关键词 狭窄空间路径规划 改进遗传算法 全局通行度 路径安全度 时间复杂度 path planning in narrow space improved genetic algorithm global pass degree path safety time complexity
  • 相关文献

参考文献11

  • 1FILLIAT D, MEYER J A. Map-based navigation in mobile robots : I, a review of localization strategies [ J ]. Cognitive Systems Re- search, 2003, 4(4): 243-282.
  • 2YUN S C, GANAPATHY V, CHONG L O. Impmved genetic algo- rithms based optimum path planning for mobile robot [ C ]//Proe of IEEE International Conference on Control, Automation, Robotics and Vision. [S. 1. ] :IEEE Press, 2010.
  • 3ZHAO Jie, ZHU Lei, LIU Gang-feng, et al. A modified genetic algo- rithm for global path planning of searching robot in mine disasters[ C ]//Proc of IEEE International Conference on Mechatronies and Automation. [ S. 1. ] :IEEE Press, 2009:4936-4940.
  • 4张超群,郑建国,钱洁.遗传算法编码方案比较[J].计算机应用研究,2011,28(3):819-822. 被引量:104
  • 5刘国栋,谢宏斌,李春光.动态环境中基于遗传算法的移动机器人路径规划的方法[J].机器人,2003,25(4):327-330. 被引量:49
  • 6MEI De-qing, DU Xiao-qiang, CHEN Zi-chen. Optimization of dy- namic parameters for a traction-type passenger elevator using a dyna- mic byte coding genetic alg0rithm[J]. Journal of MeChanical Engi- neering Science, 2009, 223(3): 595-605.
  • 7MOHANTA j C, PARHI D R, PATEL S K. Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation [J]. Computers and Electrical Engineering, 2011, 37 (6) : 1058-1070.
  • 8SOLTANI A R, TAWFIK H, GOULERMAS J Y, et al. Path plan- ning in construction sites performance evaluation of the Dijkstra, A * , and GA search algorithms [ J]. Advanced Engineering Infor- ma-tics, 2002, 16(4) : 291-303.
  • 9GEMINDER M, GERKE M. GA-based path planning for mobile robot systems employing an active search algorithm [J ]. Applied Soft Computing, 2003, 3(2): 149-158.
  • 10樊长虹,陈卫东,席裕庚.未知环境下移动机器人安全路径规划的一种神经网络方法[J].自动化学报,2004,30(6):816-823. 被引量:12

二级参考文献47

  • 1赵振,严隽薇,刘敏,刘钢.一种基于双线性链表结构编码的遗传算法[J].计算机应用,2009,29(2):554-557. 被引量:4
  • 2滕皓,邵阔义,曹爱增,杨炳儒.量子遗传算法的变尺度混沌优化策略研究[J].计算机应用研究,2009,26(2):543-545. 被引量:5
  • 3李英华,王宇平.有效的混合量子遗传算法[J].系统工程理论与实践,2006,26(11):116-124. 被引量:14
  • 4孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,..
  • 5CHOI J N,OH S K,PEDRYCZry W.Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation[J].Applied Mathematical Modelling,2009,33(6):2791-2807.
  • 6WHITLEY D,MATHIAS K,FTTZHORN P.Delta coding:an iterative search strategy for genetic algorithms[C] //Proc of the 4th International Conference on Genetic Algorithms.San Francisco:Morgan Kaufmann Pulisher,1991:77-84.
  • 7MEI D,DU X,CHEN Z.Optimization of dynamic parameters for a traction-type passenger elevator using a dynamic byte coding genetic algorithm[J].Journal of Mechanical Engineering Science,2009,223(3):595-605.
  • 8ZHANG Tao,ZHANG Yue-jie.A mixed integer programming model and improved genetic algorithm for order planning of iron-steel plants[J].Information and Management Sciences,2008,19(3):413-435.
  • 9WEI Dong,ZANCHETTA P,THOMAS D W P.Identification of electrical parameters in a power network using genetic algorithms and transient measurements[J].International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2010,29(1):235-249.
  • 10MICHALEWICZ Z,JANIKOW C Z,KRAWCZYK J B.A modified genetic algorithm for optimal control problems[J].Computers & Mathematics with Application,1992,23(12):83-89.

共引文献162

同被引文献294

引证文献36

二级引证文献425

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部