期刊文献+

BI-RADS分类在全数字化乳腺摄影乳腺良恶性病变诊断中的应用 被引量:4

Application of the BI-RADS classification in full field digital mammography for the diagnosis of benign and malignant breast lesions
在线阅读 下载PDF
导出
摘要 目的:探讨乳腺影像报告和数据系统(BI-RADS)在乳腺良恶性病变诊断中的应用价值。方法:586例患者行全数字化乳腺摄影(FFDM)检查,并根据第四版 BI-RADS 分类标准进行图像分析。将 BI-RADS 分类评估结果与病理结果进行比较。结果:586例患者的 FFDM 检查共发现601个病灶,其中良性病灶340个,恶性病灶261个。与病理结果比较,BI-RADS 分类评估对良、恶性乳腺病变的诊断符合率为82.9%,敏感度为92.0%,特异度75.9%,阳性预测值为74.5%,阴性预测值为92.5%;受试者工作特征曲线(ROC)下面积为0.871(P <0.001),95%可信区间为0.842~0.900。结论:BI-RADS 分类标准对乳腺良恶性病变的诊断和鉴别诊断有重要作用,同时也有利于指导临床制定合适的治疗方案。 Objectire:To explore the application value of Breast Imaging Reporting and Data System (BI-RADS)clas-sification in the diagnosis of benign and malignant breast lesions.Methods:586 cases undergone full field digital mammogra-phy (FFDM)in our hospital were enrolled.All the images were analyzed and the lesions were categorized according to the BI-RADS (the fourth edition),and the diagnostic results were compared with pathological results.Results:601 lesions were detected in all 586 patients,including 340 benign lesions and 261 malignant lesions.Compared with pathological results,the accuracy,sensitivity,specificity,positive predictive value (PPV)and negative predictive value (NPV)of BI-RADS classifi-cation for diagnosis of benign lesions and malignant lesions were 82.9%,92.0%,75.9%,74.5% and 92.5% respectively;area under receiver operating characteristic curve (ROC)was 0.871 with statistic significance (P〈0.001),the 95% confi-dence interval was 0.842~0.900.Conclusion:BI-RADS classification may be very useful for diagnosis and differential diag-nosis of benign and malignant breast lesions,and is helpful to guide the therapeutic plan.
出处 《放射学实践》 2014年第12期1429-1433,共5页 Radiologic Practice
关键词 放射摄影术 数字化乳腺摄影术 乳腺影像报告和数据系统 乳腺疾病 乳腺肿瘤 鉴别诊断 Breast diseases Breast neoplasms Radiography Full field digital mammography Breast imaging repor-ting and data system Differential diagnosis
  • 相关文献

参考文献11

  • 1Fowler EE, Sellers TA, Lu B, et al. Breast imaging reporting and data system (BI-RADS) breast composition descriptors automa- ted measurement development for full field digital mammography [J/OL]. Medical Physics,2013,40(ll) :113502. DOI: 10. 1118/1. 4824319.
  • 2叶芳,曾蒙苏,严福华,凤伟,周梅玲,李轫晨,陈文芳.MRI结合数字化钼靶诊断乳腺癌的临床研究[J].放射学实践,2007,22(11):1139-1143. 被引量:14
  • 3张艳琦,张丽娜,顾林.102例乳腺Paget病临床分析[J].中华普通外科杂志,2013,28(8):633-634. 被引量:5
  • 4Moon WK, Lo CM,Chang JM, et al. Quantitative ultrasound anal- ysis for classification of BI RADS category 3 Breast masses[J]. J Digital Imaging,2013,26(6): 1091 1098.
  • 5Chang Z, Yin F, Yoo S, et al. SUECAMPUSJ04 .- Evaluating radia- tion-induced changes with diffusion weighted MRI and dynamic contrast enhanced MRI in patients with early stage breast cancer treated with stereotactic body radiotherapy., initial results [J]. Medical Physics,2013,40(6) 378-379.
  • 6Baum JK, Hanna LG, Acharyya S, et al. Use of BI-RADS 3-proba- bly benign category in the American college of radiology imaging network digital mammographie imaging screening trial[J]. Radio- logy, 2011,260(1) : 61-67.
  • 7Raza S,Goldkamp AL,Chikarmane SA,et al. US of breast masses categorized as BI-RADS 3,4 and 5:pictorial review of {actors in- fluencing clinical managementl [J]. Radiographics, 2010,30 ( 5 ) 1199-1213.
  • 8Eberl MM, Fox CH, Edge SB, et al. BI-RADS classification for management of abnormal mammograms[J]. J Am Board Fam Med, 2006,19 (2) : 161-164.
  • 9黄丹凤,林礼务,何以敉,薛恩生,陈志奎,俞丽云.非特异性肉芽肿性乳腺炎声像图特征及误诊分析[J].中国超声医学杂志,2014,30(1):22-25. 被引量:8
  • 10何晓东,顾素英,王玲玲,马杰.乳腺癌全数字化X射线摄影征象与病理的对照分析[J].中华肿瘤防治杂志,2011,18(6):443-446. 被引量:7

二级参考文献62

共引文献52

同被引文献22

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部