期刊文献+

基于容积原则的概率假设密度滤波算法 被引量:2

Probability Hypothesis Density Filter Based on Cubature Rule and Its Application to Multi-Target Tracking
在线阅读 下载PDF
导出
摘要 为改善多目标跟踪问题中概率假设密度滤波精度与算法运行时间之间的关系,提高目标状态和数目的实时估计性能,提出了基于容积原则的概率假设密度滤波算法.该算法在高斯混合粒子概率假设密度的框架下,利用容积数值积分原则直接计算非线性随机函数的均值和方差,产生粒子滤波算法的重要性函数,实现高精度粒子的重构,来近似目标状态和数目的概率分布,并且在高斯混合概率假设密度滤波算法中进行采样和更新.仿真验证了所提出算法的有效性,其Wasserstein误差距离优化了17.32%,目标数估计均值也提高了23.72%. In order to balance the requirement for precision and real-time estimation performance when dealing with the problem of multi-target tracking in probability hypothesis density filter algorithm,an implementation method of PHD filter based on the cubature rule was proposed.In the framework of the probability hypothesis density for the Gaussian mixture particle,the new algorithm directly used cubature rule based numerical integration method to calculate the mean and covariance of the nonlinear random function by a set of the certain particles and their weights,thereby generating the importance density function of the particle filter algorithm to achieve highprecision particle reconstruction,and approximating to the target state and probability distribution of the target number.Finally the prediction and update distributions for the new algorithm were approached in the framework of the probability hypothesis density for the Gaussian mixture.Simulation results show the effectiveness of the proposed algorithm,that Wasserstein depresses 17.32% and mean of object number advances 23.72%.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第12期1304-1309,共6页 Transactions of Beijing Institute of Technology
基金 航天支撑技术基金资助项目(N7CH0004) 国家部委基础基金资助项目(WJY201114)
关键词 多目标跟踪 随机有限集 概率假设密度 容积原则 粒子滤波 multi-target tracking random finite set(RFS) probability hypothesis density(PHD) cubature rule particle filter
  • 相关文献

参考文献15

  • 1Matheron G. Random sets and integral geometry[M]. New York: Wiley, 1975.
  • 2Mahler R. A theoretical foundation for the Stein-Winter probability hypothesis density ( PHD ) multi-target tracking approach [C] // Proceedings of the MSS National Symposium on Sensor and Data Fusion. San Antonio, USA: [s. n. ], 2000:99 - 117.
  • 3Sidenbladh H. Multi-target particle filtering for the probability hypothesis density[C]//Proceedings of the International Conference on Information Fusion. Cairns, Australia: [s. n. ], 2003 : 800 - 806.
  • 4Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target fltering with random finite sets [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(4) :1224 - 1245.
  • 5Vo Ba-Ngu , Ma Wing-Kin . The Gaussian mixture probability hypothesis density filter [J]. IEEE Trans Signal Processing, 2006,54(11) :4091 - 4104.
  • 6张俊根,姬红兵.高斯混合粒子PHD滤波被动测角多目标跟踪[J].控制与决策,2011,26(3):413-417. 被引量:12
  • 7吕学斌,游志胜,周群彪,陈正茂,蔡葵.基于无迹变换的概率假设密度滤波算法[J].系统仿真学报,2009,21(3):845-850. 被引量:5
  • 8黄伟平,徐毓,甘少武.抗“飞点”的UKF-GMPCPHD滤波算法[J].系统工程与电子技术,2012,34(1):34-39. 被引量:1
  • 9Whiteley N, Singh S, Godsill S. Auxiliary particle im- plementation of probability hypothesis density filter[J]. IEEE Transaction on Aerospace and Electronic Systems, 2010,46(3) :1437 - 1454.
  • 10Nadarajah N, Kirubarajan T, Lang T. Multitarget tracking using probability hypothesis density smoothing [J]. IEEE Transaction on Aerospace and Electronic Systems, 2011,47(4) :2344 - 2360.

二级参考文献47

  • 1胡峰,范金城.动态测量系统的有界影响滤波[J].控制理论与应用,1993,10(1):36-45. 被引量:24
  • 2A Johansen, S Singh, A Doucet, B Vo. Convergence of the SMC implementation of the PHI) filter [J]. Methodology and Computing in Applied Probability (S0951-9211), 2006, 8(2): 265-291.
  • 3Y Bar-Shalom, X R Li. Multitarget-Multisensor Tracking: Principles and Techniques [M]. Storrs, CT, USA: YBS Publishing, 1995.
  • 4RONALD P S MAHLER. Statistics 101 for Multisensor, Multitarget Data Fusion [J]. 1EEE Transactions on Aerospace and Electronic Systems (S0885-8985), 2004, 19(1): 53-64.
  • 5R Mahler. A theoretical foundation for the Stein-Winter Probability Hypothesis Density (PHD) multi-target tracking approach [C]//Proc. -MSS Nat'l Syrup. on Sensor and Data Fusion, San Antonio, TX, USA, June 2002. USA: 2002.
  • 6Ba-Tuong Vo, Ba-Ngu Vo, Antonio Cantoni. Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter [J]. IEEE Transactions on Signal Processing (S1053-587X), 2007, 55(7): 3553-3567.
  • 7K Panta, B Vo, S Singh, A Doueet. Probability hypothesis density filter versus multiple hypothesis tracking [C]// Proceedings of SPIE- Volume Signal Processing, Sensor Fusion, and Target Recognition, ⅩⅢ, Ivan Kadar, Editior, August 2004. USA: SPIE, 2004, 5249: 284-295.
  • 8D J Daley, D Vere-Jones. An introduction to the theory of point processes [M]. Germany: Springer, 1988.
  • 9I Goodman, R Mahler, H Nguyen. Mathematics of Data Fusion [M]. Boston, USA: Kluwer Academic Publishers, 1997.
  • 10B Vo, W K Ma. A closed-form solution to the probability hypothesis density filter [C]// Information Fusion, 2005 8th International Conference on 25-28 July 2005 (ISBN: 0-7803-9286-8).

共引文献15

同被引文献18

  • 1Ashraf M, Aziz. A joint possibilistic data association tech- nique for tracking multiple targets in a cluttered environ- ment [ J ]. Information Sciences ,2014,280:239-260.
  • 2Mahler R. Multitarget bayes filtering via first-order muhi- target moments[ J]. IEEE Trans. on Aerospace and Elec- tronic Systems, 2003, 39(4) : 1152-1178.
  • 3Vo B, Ma W K. The Gaussian mixture probability hy- pothesis density filter[ J ]. IEEE Trans. on Signal Process- ing,2006,54( I1 ) :4091-4104.
  • 4Zhang Hongjian, Jing Zhongliang, HU Shiqiang. Gaussi- an mixture CPHD filter with gating technique[ J ]. Signal Processing, 2009, 89 ( 8 ) : 1521-1530.
  • 5Wang Yan, Meng Huadong, Liu Yimin,et al. Collaborative penalized Gaussian mixtm PHD tracker for close target tracking[J]. Signal Processing,2014,102(9) :1-15.
  • 6Vo B, Pasha A, Tuan H D. A Gaussian mixture PHD fil- ter for nonlinear jump markov models [ C ]//in 45th IEEE Conference on Decision & Control: San Diego, CA, USA, 2006:3162-3167.
  • 7Guo Dong, Wang Xiao Dong. Quasi Monte Carlo filtering in nonlinear dynamics systems[ J]. IEEE Trans. on Sig-nal Processing, 2006, 54 (6) :2087-2098.
  • 8Cools R, Haegemans A. An imbedded family of cubature formulae for n-dimensional product regions [ J ]. Journal of Computational and Applied Mathematics, 1994, 51 (2) : 251-260.
  • 9Wang X. Randomized Hahon sequences[ J]. Mathemati- cal and Computer Modelling, 2000, 32 (7) :887- 899.
  • 10杨金龙,姬红兵,刘进忙.高斯厄米特粒子PHD被动测角多目标跟踪算法[J].系统工程与电子技术,2013,35(3):457-462. 被引量:9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部