期刊文献+

2.25Cr1Mo0.25V钢高温变形微观组织的演变分析与数值模拟 被引量:6

Microstructural evolution and numerical simulation of 2. 25Cr1Mo0. 25V alloy steel during hot deformation
原文传递
导出
摘要 在Gleeble-3500热模拟试验机上对2.25Cr1Mo0.25V钢进行等温压缩试验,得到变形温度在900-1200℃、应变速率在0.001-10 s^-1、变形量为60%时的高温流动应力-应变曲线。结合金相实验,研究2.25Cr1Mo0.25V钢在不同变形条件下微观组织的演变规律,建立2.25Cr1Mo0.25V钢在高温塑性变形过程中的动态再结晶数学模型。将模型与有限元结合,对热压缩过程的组织演化进行数值模拟,模拟结果与试验结果的相对误差小于11%,验证了模型的正确性。 Isothermal compressive experiments of 2. 25Cr1Mo0. 25V steel were carried out with hot-simulation machine of Gleeble - 3500. High temperature flow stress-strain curves were gained over the range of deformation temperature from 900 to 1200℃, strain rate from 0. 001 to 10 s^-1 and 60% deformation degree. In addition, microstructural evolution of 2. 25Cr1Mo0. 25V steel under different deformation conditions was researched by both metallurgical tests and flow stress-strain curves and mathematical model of dynamic recrystallization of 2.25Cr1Mo0. 25V steel was established during hot temperature plastic deformation. By combining the microstructure model with finite element method, the microstructural evolution was simulated during isothermal compressive deformation. The relative error is smaller than 11% by comparing the results of simulation and experiment. The correctness of model was tested.
出处 《锻压技术》 CAS CSCD 北大核心 2015年第1期148-153,共6页 Forging & Stamping Technology
基金 国家科技重大专项(2011ZX04002-101-002)
关键词 2.25Cr1Mo0.25V钢 高温流变行为 动态再结晶 数学模型 2. 25Cr1Mo0. 25V steel high temperature rheological behavior dynamical recrystallization mathematical model
  • 相关文献

参考文献10

  • 1梅丽华,魏刚.2.25Cr-1Mo-0.25V钢加氢反应器的研制[J].压力容器,2003,20(11):36-42. 被引量:27
  • 2谢章龙,刘振宇,王国栋.低碳9Ni钢的动态再结晶数学模型[J].东北大学学报(自然科学版),2010,31(1):51-55. 被引量:12
  • 3马晓辉.P91钢厚壁管垂直挤压工艺模拟研究[D].北京:机械科学研究总院,2011.
  • 4Sellars C M. Computer modeling of structural evolution during hot working process [ J ]. Materials Science and Technology, 1985, 1 (4): 325 -332.
  • 5Roberts W. Mierostrueture evolution and flow stress during hut working [ J 1. Strength of Metals and Alloys [ C ]. Oxfnrd, 1985.
  • 6Karhausen K, Kopp R, De Souza M M. Numericalsimulation method fnr designing thermu mechanical treatments, illustrated by bar rolling [J]. Scandinavian .hmrnal of Metallurgy, 1991, 20 (6) : 351 -363.
  • 7Ashok Kumar. Modelling the micnstructural evolution during hnl compression of low carbon steel [J]. Steel Research, 1993, 64 (4): 210 -217 .
  • 8Sellars C M. Modelling microstructural development during hot rolling [J]. Materials Science and Technology, 1990, 6 (9): 1072 - 1081.
  • 9Toth L S, Jonas J J. Modelling tile texture changes produced by dynamic recrystallization [ J ]. Scripta Metallurgica et Materialia, 1992, 27 (3): 359-363.
  • 10Bowden J W, Jonas J J. Effect of interpass time on austenite grain refinement by means of dynamic recrystallization of austenite [ J ]. Metallurgical Transaetions A, 1991, 22A (12): 2947-2957.

二级参考文献9

  • 1Ling Zhang,Wangyue Yang,Zuqing Sun.Modeling of microstructural evolution during dynamic recrystallization in coarse Nb microalloyed austenite[J].Journal of University of Science and Technology Beijing,2007,14(2):130-135. 被引量:5
  • 2Laasraoui A, Jonas J J. Recrystallization of austenite after deformation at high temperatures and strain rates-analysis and modeling[J]. Metallurgical Transactions A, 1991,22:151-160.
  • 3Xie Z L, Liu Z Y, Wang G D. Development of online heat treatment proces.sing for 9Ni steel plates [ C ] //The Third Baosteel Biennial Academic Conference. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 2008:141 - 144.
  • 4Syn C K, Jin S H, Morris J W, et al. Cryogenic fracture toughness of 9Ni steel enhanced through grain refinement[ J ]. Metallurgical Transactions A, 1976,7:1827 - 1832.
  • 5McQueen H J, Yue S, Fry E. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995,53:293 310.
  • 6Imbert C, Ryan N D, McQueen H J. Hot workability of three grades of tool steel[J]. Metallurgical Transactions A. 1984, 15 : 1855 - 1864.
  • 7Kim S Ⅱ, Yoo Y C. Dynamical recrystallization behavior of AISI 304 stainless steel [ J ]. Materials Science and Engineering A, 2001,311 : 108 - 113.
  • 8Medina S F, Hemandez C A. General expression of the Zener- Hollomon parameter as a function of the chemical composition of low alloy and rnicroalloyed steels[J]. Acta Mater, 1996,44 (1):137- 148.
  • 9Yue C X, Zhang L W, Liao S L, et al, Research on the dynamic recrystallization behavior of GCr15 steel [J]. Materials Science and Engineering A, 2009,499 ( 1/2 ) : 177 -181.

共引文献37

同被引文献49

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部