期刊文献+

基于语义关系的疾病知识提取系统 被引量:1

Disease Knowledge Extraction System Based on Semantic Relation
在线阅读 下载PDF
导出
摘要 在生物医学领域,通过知识提取过程从海量的生物医学文献中提取疾病、基因和药物之间的关系并可视化显示,可以为临床医学实验提供有效的假设检验,推动生物医学科技的发展。为此,提出一种基于语义关系的以疾病为中心的疾病、基因和药物间的知识提取系统。利用Sem Rep得到特定主题Medline文献的语义输出,通过显著信息提取算法提取Sem Rep的语义输出关系。对照OMIM和GHR在线数据库进行评估,实验结果显示该显著信息提取系统的准确率可达0.76。 In the biomedical field,knowledge summarization can greatly promote the innovation of biomedical science and technology. Dynamic summarization can provide novel clinical experimental hypothesis by extracting the links among diseases,genes,drugs from the mass of biomedical literature and visualizing it. This paper presents a system which summarizes the salient relations by the salient extraction algorithm using the specific subject Medline corpus by Sem Rep semantic output. Experimental results show that the precise of experimental result is 0.76 referring to OMIM and GHR online databases.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期284-288,295,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61070098 61272373 61340020) 中央高校基本科研业务费专项基金资助项目(DUT13JB09) 国家社会科学基金资助项目(08BTQ025)
关键词 知识提取 语义关系提取 显著信息提取算法 SEM Rep工具 语义输出 网络图可视化 knowledge extraction semantic relation extraction significant information extraction algorithm Sem Rep tool semantic output network diagram visualization
  • 相关文献

参考文献13

  • 1Hersh W R,Hickam D H.How Well Do Physicians Use Electronic Information Retrieval Systems?[J].The Journal of the American Medical Association,1998,280(15):1347-1352.
  • 2Kilicoglu H,Fiszman M,Rodriguez A,et al.Semantic MEDLINE:A Web Application for Managing the Results of Pub Med Searches[C]//Proceedings of the3rd International Symposium for Semantic Mining in Biomedicine.[S.l.]:IEEE Press,2008:69-76.
  • 3Workman T E,Hurdle J F.Dynamic Summarization of Bibliographic-based Data[J].BMC Medical Informatics and Decision Making,2011,11(1).
  • 4Workman T E,Fiszman M,Hurdle J F.Text Summarization as a Decision Support Aid[J].BMC Medical Informatics and Decision Making,2012,12(1).
  • 5Fraser C,Murray A,Burr J.Identifying Observational Studies of Surgical Interventions in Medline and Embase[J].BMC Medical Research Methodology,2006,6(1).
  • 6廖涛,刘宗田,王利.多主题文本摘要抽取的研究与实现[J].计算机工程,2011,37(6):21-23. 被引量:5
  • 7Rindflesch T C,Fiszman M,Libbus B.Semantic Interpretation for the Biomedical Research Lite-rature[M].[S.l.]:Springer,2005.
  • 8Fiszman M,Rindflesch T C,Kilicoglu H.Abstraction Summarization for Managing the Biomedical Research Literature[C]//Proceedings of Workshop on Computational Lexical Semantics.[S.l.]:Springer,2004:76-83.
  • 9商玥,林鸿飞,杨志豪.利用语义关系抽取生成生物医学文摘的算法[J].计算机科学与探索,2011,5(11):1027-1036. 被引量:7
  • 10Kullback S,Leibler R A.On Information and Sufficiency[J].The Annals of Mathematical Statistics,1951,22(1):79-86.

二级参考文献32

  • 1Luhn H E The Automatic Creation of Literature Abstracts[J]. IBM Journal of Research and Development, 1958, 2(2): 159-165.
  • 2Yeh Jen-Yuan, Ke Haoren, Yang Weipang, et al. Text Summarization Using a Trainable Summarizer and Latent Semantic Analysis[J]. Information Processing and ManagemenL 2005, 41(1) 75-95.
  • 3Salton G, Singhal A, Mitra M, et al. Automatic Text Structuring and Summarization[J]. Information Processing and Management, 1997, 33(2): 193-207.
  • 4Girvan M, Newman M E J. Community Structure in Social and Biological Network[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.
  • 5Du Nan, Wu Bin, Xu Liutong, et al. Community Detection in Large-scale Social Networks[C]//Proc. of WebKDD/SNA-KDD'07. New York, USA: ACM Press, 2007: 16-25.
  • 6Steinberger J, Jezek K. Text summarization: an old challenge and new approaches[J]. Foundations of Computational, Intelligence, 2009, 6: 127-149.
  • 7Luhn H E The automatic creation of literature abstracts[J] IBM Journal of Research Development, 1958, 2(2): 159- 165.
  • 8I Edmundson H E New methods in automatic extracting[J]. I Journal of the ACM, 1969, 16(2): 23-42.
  • 9Erkan G, Radev D R. LexRank: graph-based lexical centrality as salience in text summarization[J]. Journal ofArtificial Intelligence Research, 2004, 22(1): 457-479.
  • 10Yeufel S, Moens M. Sentence extraction as a classifica- tion task[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics and Conference ofthe European Chapter of the Association for Computational Linguistics (ACL/EACL), Madrid, Spain, 1997. Stroudsburg, PA, USA: Association for Computational Linguistics, 1997: 58-65.

共引文献10

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部