期刊文献+

一种带正弦函数因子的粒子群优化算法 被引量:9

An Improved Particle Swarm Optimization Algorithm Based on Trigonometric Sine Factor
在线阅读 下载PDF
导出
摘要 粒子群优化算法(particle swarm optimization,PSO)具有实现简单、在演化前期收敛速度快等优点,但在演化后期具有收敛速度慢、容易陷入局部最优以及精度低等不足.针对PSO算法容易陷入局部最优及精度低的不足提出一种带正弦函数因子的粒子群优化算法(TFPSO).该算法在PSO算法的位置更新方程中引入具有周期振荡性的正弦函数因子,使每个粒子位置获得周期振荡性,扩大搜索空间,更容易跳出局部最优,避免算法过早的收敛,找到最优值.实验研究表明,该算法不但实现简单、稳定而且提高了解的精度. Particle Swarm Optimization{ PSO ) is a simple algorithm with converging very fast in the early stage of evolution process but converging very slow in the later stages. It is also easy to fall into local optimum and causes low accuracy of solution. For easily falling into local optimum and causing low accuracy of solution of PSO algorithm, this paper put forwards an improved PSO algorithm based on sine trigonometric factor ( TFPSO). The algorithm introduces the periodic oscillations trigonometric factor in the updating e- quation of the position of the PSO algorithm, so that each particle obtains periodic oscillations to expand the search space and more easily escape from local optima and avoid premature convergence of algorithms and find the most excellent value. Experimental studies show that the TFPSO algorithm is not only simple to implement and stability, but also to improve the accuracy of solution.
作者 邵鹏 吴志健
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第1期156-161,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070008)资助 中央高校基本科研业务费专项项目(2012211020205)资助
关键词 粒子群算法 三角函数 正弦函数因子 周期振荡性 particle swarm optimization trigonometric the trigonometric sine factors periodic oscillations
  • 相关文献

参考文献16

  • 1Kennedy J, Eberhart. Particle swarm optimization [ C ]. Proceedingsof IEEE International Conference on Neural Networks, 1995 : 1942-1948.
  • 2吕艳萍,李绍滋,陈水利,郭文忠,周昌乐.自适应扩散混合变异机制微粒群算法[J].软件学报,2007,18(11):2740-2751. 被引量:50
  • 3Shi Y,Eberhart R C. A modified particle swarm optimizer [ C].Proceedings of IEEE Congress on Evolutionary Computation, 1998 :69-73.
  • 4Shi Y, Ebeiliart R C. Particle swarm optimization with fuzzy adap-tive inertia weight [C]. Proceedings of the 2001 Congress on Evo-lutionary Computation,2001 : 101-106.
  • 5Clerc M, Kennedy J. The particle swarm-explosion,stability,andconvergence in a multidimensional complex space [ J ]. IEEETransactions on Evolutionary Computation ,2002,6(1) : 58-73.
  • 6Parsopoulos K E,Vrahatis M N. UPSO-A unified particle swarmoptimization scheme[ C]. Lect. Ser. Comput. Sci,2004 :868-873.
  • 7Peram T, Veeramachaneni K, Mchan C K. ? Fitness-distance-ratiobased particle swarm optimization [ C ]. Proceedings of the 20031EEE Congress on Swann Intelligence Symposium,2003: 174-181.
  • 8Van den Bergh F,Engelbrecht A P. A cooperative approach to parti-cle swarm optimization [ J ]. IEEE Transactions on EvolutionaryComputation,2004,8(3) :225-239.
  • 9Liang J J,Qin A K,Suganthan P N,Baskar S. Comprehensive learn-ing particle swarm optimizer for global optimization of multimodalfunctions [ J] ? IEEE Transactions on Evolution Computation,2006,10(3);281-295.
  • 10Wang Hui, Wu Zhi-jian, Sharyar Rahnamayan, et al. Enhancingparticle swarm optimization using generalized opposition-basedlearning [ J]. Information Sciences,2011,181 (20) :4699-4714.

二级参考文献13

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2Rosenbrock H H. An automatic method for finding the greatest or least value of a function[J]. Computer Journal, 1960,3 (3) 175-184.
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[C]∥Proc of the IEEE Int Conf on Neural Networks.Piscataway,1995:1942-1948.
  • 4Wang Hui,Wu Zhi-jian,Rahnamayan S,et al.Enhancing particle swarm optimization using generalized opposition-based learning[J].Information Sciences,2011,181(20):4699-4714.
  • 5Yang X-S,Deb S.Engineering optimization by cuckoo search[J].Int.J.Math.Modelling Num,Optimization,2010,1(4):330-343.
  • 6Dixon L C W,Mills D J.Effect of rounding errors on the Variable Metric Method[J].Journal of Optimization Theory and Applications,1994,80(1):175-179.
  • 7崔志化,曾建潮.微粒群优化算法[M].北京:科学出版社,2004.
  • 8Shi Y, Eberhart R C. A modified particle swarm optimizer[C]// Proc. Congr. Evol. Comput. 1998 : 69-73.
  • 9Parsopoulos K E,Vrahatis M N.UPSO-A unified particleswarm optimization scheme[Z].Lect.Ser.Comput.Sci.,2004:868-873.
  • 10Liang J J,Qin A K,Suganthan P N,et al.Comprehensive lear-ning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Trans.Evolut.Comput,2006,10:281-295.

共引文献61

同被引文献67

引证文献9

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部