期刊文献+

在线地图服务日志的大数据分析 被引量:4

Big Data Analysis of Web Map Service Log
在线阅读 下载PDF
导出
摘要 随着基于地理位置服务的不断发展,在线地图应用(WMS)成为了人们生活中不可缺少的一部分.在PC端WMS大数据的基础上,以新颖的视角对用户的搜索行为和不同城市的搜索差异进行了测量、分析和理解.首先从宏观和微观两个角度对用户搜索时间进行分析,指出WMS数据不同于其他地理信息数据,具备搜索行为前瞻的特性;随后,验证了每个城市高频查询兴趣点的查询频次符合Zipf分布,并解释了分布参数所蕴含的物理意义;更进一步的,用简单直观的方法定量研究了城市之间的流动性和城市的人流模式.为随后的基于WMS数据的进一步挖掘和研究提供了测量基础. With the rapid growth of location-based services (LBS) ,web map service (WMS) is becoming indispensable in our daily life. From a new perspective, this paper measures and analyzes the user behaviors and regional differences in WMS, based on a big log dataset from the PC clients of a large-scale WMS provider. We give analysis on users' searching times from both macro and micro per- spective, and point out that WMS data has a feature of searching behavior prediction, which is absent in other location-based datasets. Then, we observe and verify that the searching frequencies of point of interests in a city conform to Zipf distribution, and explain the underlying physical meanings of the corresponding parameters. In addition, we present a simple and intuitive approach to quantitatively study the inter-city fluidity and intra-city mobility patterns. And our work can serve as a measurement basis for future work in the area of WMS data mining.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第1期33-38,共6页 Journal of Chinese Computer Systems
基金 自然科学基金项目(61272459 61170245)资助 国家"八六三"计划(2013AA013501)资助 工信部重大专项(2013ZX03002003-004)资助 中央高校基本科研业务费 陕西省工业攻关项目(2013K06-38)资助
关键词 地理兴趣点 前瞻特性 ZIPF分布 城市流动性 web map service point of interest searching behavior prediction Zipf distribution inter-city fluidity
  • 相关文献

参考文献14

  • 1Lin S, Gao Z, Xu K. Web 2. 0 traffic measurement ; analysis on on-line map applications [ C ]. Proceedings of the 18 th InternationalWorkshop on Network and Operating Systems Support for DigitalAudio and Video,ACM,2009=7-12.
  • 2Xie X,Zheng Y,Trajectories G L G P S. Understanding user behav-ior geospatially [ J ]. Communications of the CCF (in Chinese),2008,4(10):4349.
  • 3Li Q,Zheng Y,Xie X,et al. Mining user similarity based on loca-tion history[ C]. Proceedings of the 16th ACM SIGSPATIAL Inter-national Conference on Advances in Geogr^)hic Information Sys-tems ,ACM,2008 : 34.
  • 4Weber I,Castillo C. The demographics of web search[ C] ? Proceed-ings of the 33 rd International ACM SIGIR Conference on Researchand Development in Information Retrieval, ACM ,2010 :523-530.
  • 5Bao J,Zheng Y,Mokbel M F. Location-based and preference-awarerecommendation using sparse geo-social networking data[ C]. Pro-ceedings of the 20th International Conference on Advances in Geo-grohic Information Systems, ACM, 2012 : 199-208.
  • 6Yuan J,Zheng Y,Xie X. Discovering regions of different functionsin a city using human mobility and POIs[ C]. Proceedings of the18th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining,ACM,2012:186-194.
  • 7Zipf G K. The psycho-biology of language : an introduction to dy-namic philology[ J]. Boston: Houghton Mifflin Co. ,1935.
  • 8Goodkind D,West L A. China's floating population:Definitionsydataand recent findings[J]. Urban Studies,2002139(12) :2237-2250.
  • 9Sheng C,Zheng Y, Hsu W,et al. Answering top-k similar regionqueries[C]. Database Systems for Advanced Applications. SpringerBerlin Heidelberg ,2010 : 186-201.
  • 10Zhu Y,Zheng Y,Zhang L,et al. Inferring taxi status using gps traj-ectories [ J], ArXiv Preprint arXiv: 1205.4378,2012.

同被引文献32

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部