期刊文献+

贝叶斯网络结构粒子群优化学习算法 被引量:3

Particle Swarm Optimization Learning of Bayesian Network Structure
在线阅读 下载PDF
导出
摘要 提出一种信息论结合粒子群优化的贝叶斯网络结构学习算法,将约束最大信息熵作为最高评分函数,对网络结构进行复杂度约束,设计了粒子位置和速度向量的操作方法,解决单纯利用KL距离进行搜索的缺陷.在网络结构的搜索空间相对较大的情况下,该优化算法能在较短的时间内收敛,获得更准确的网络结构.仿真实验结果表明,该算法在时间和精度上都具有较好的效果. A Bayesian networks learning was put forward based on information theory with particle swarm optimization algorithm. With the information entropy as the highest scoring function, the network structure complexity was constrained, and particle position and velocity vector operation designed, to solve the defects in using KL distance alone for search. In relatively large search space in the network structure, the optimization algorithm can obtain convergence in a short period of time to achieve fairly accurate network structure, and the algorithm and validation implemented through simulation experiment. The experimental results show that the algorithm has good effects in time and for precision.
作者 刘扬
出处 《厦门理工学院学报》 2014年第5期46-50,共5页 Journal of Xiamen University of Technology
关键词 贝叶斯网络 结构学习 最大信息熵 粒子群优化 Bayesian network structure learning maximum information entropy particle swarm optimization
  • 相关文献

参考文献10

二级参考文献60

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2杨有龙,吴艳.基于进化算法的贝叶斯网络度量[J].兵工学报,2004,25(5):586-590. 被引量:6
  • 3俞欢军,许宁,张丽平,胡上序.混合粒子群优化算法研究[J].信息与控制,2005,34(4):500-504. 被引量:18
  • 4冀俊忠,刘椿年,阎静.一种快速的贝叶斯网结构学习算法[J].计算机研究与发展,2007,44(3):412-419. 被引量:9
  • 5Friedman N.The Bayesian structural EM algorithm[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,San Francisco,1998:129-138
  • 6Cooper G F,Herskovits E.A Bayesian method for the induction of probabilistic networks from data[J].Machine Learning,1992,9(4):309-347
  • 7Chickering D M.Optimal structure identification with greedy search[J].Journal of Machine Learning Research,2002,11(3):507-554
  • 8Larranaga P,Poza M,Yurramendi Y,et al.Structure learning of Bayesian networks by genetic algorithms:a performance analysis of control parameters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):912-926
  • 9Wong M L,Leung K S.An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach[J].IEEE Transactions on Evolutionary Computation,2004,8(4):378-404
  • 10Shetty S,Song M.Structure learning of Bayesian network using a semantic genetic algorithm-based approach[C]//Proceedings of the 3rd International Conference on Information Technology:Research and Education,Hsinchu,2005:454-458

共引文献30

同被引文献31

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部