期刊文献+

基于贝叶斯分类器的实时视频优化传输方法

Real-time Video Optimization Transmission Method Based on Bayesian Classifier
在线阅读 下载PDF
导出
摘要 通用UDP协议传输实时视频时存在延时较长的问题。为此,提出一种基于贝叶斯分类器的自适应视频实时传输方法。在发送图像数据前进行帧内压缩,压缩过程根据网络的实时带宽调整压缩质量因子,进行分组发送。在接收端进行数据包重组并解码,利用贝叶斯准则得出自适应调整的阈值,对使用自适应算法与使用固定因子情况下产生的延时进行比较,分析延时产生的原因。实验结果表明,该方法由于优化了传输数据队列的长度,在不增加网络延时的情况下,局部时间内提高了视频图像的传输质量。 Using the common UDP protocol to transmit the real-time video,there is a serious problem of a very long delay,especially in the wireless environment. In response to these problems, this paper proposes an adaptive real-time video transmission method based on Bayesian classifier. Before the network sends the packets,the intraframe image data is compressed. The compression process adjusts timely the compression quality factor based on the network ’ s real-time bandwidth. At the same time, the receiving-end restructures and decodes them. The Bayesian theory gives the adaptive threshold through calculating. This paper compares the transmission delay which uses the adaptive algorithm with that uses fixed factor algorithm,and analyzes the reasons for the delay generated. Results show that,because of the need to optimize data transmission queue length, the adaptive method improves the transmission quality of the video image without increasing the latency of the network.
出处 《计算机工程》 CAS CSCD 2014年第12期251-257,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61262088) 国家"863"计划基金资助项目(2013aa0816) 北京市自然科学基金资助项目(4132025)
关键词 贝叶斯分类器 JPEG算法 帧内压缩 自适应算法 实时传输 传输延时 Bayesian classifier JPEG algorithm intraframe compression adaptive algorithm real-time transmission transmission delay
  • 相关文献

参考文献16

二级参考文献34

  • 1吴乐南,数据压缩的原理与应用,1995年
  • 2高 文,多媒体数据压缩技术,1994年
  • 3姚庆栋,图像编码基础,1993年
  • 4姚庆栋,图像编码基础,1993年
  • 5吴乐南,数据压缩的原理与应用,1995年
  • 6高 文,多媒体数据压缩技术,1994年
  • 7Fried N, Geiger D, Goldszmidt M, et al. Bayesian network classifiers [J]. Machine Learning, 1997, 29(2-3): 131 ~163.
  • 8Langley P, Iba W, Thompson K. An analysis of Bayesian c lassifiers [A]. Proceedings of the Tenth National Conference on Artificial Intelligence [C]. Menlo Park, USA: AAAI Press, 1992.223 ~ 228.
  • 9Kononenko I. Seminaive Bayesian classifier [ A]. Sixth European Working Session on Le arning [ C]. New York: Springer-Verlag,1991. 206~219.
  • 10Pazzani M J. Searching for dependencies in Bayesian classifiers [A]. Learning from Data: Artificial Intelligence and Statistics [C]. New York: Springer-Verlag, 1996. 239~248.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部