摘要
Focusing on improving the galvanizability of the third generation automotive steel, the effect of surface ox ide morphologies on the galvanizability was studied. The results show that the surface oxide types of sample steels by X ray photoelectron spectroscopy (XPS) analysis after annealing in different conditions are the same. Only MnO, MnO2 and Cr2O3 were detected and no complex oxide exists on the surface. Morphologies of surface oxides can greatly influence the galvanizability of the third generation automotive steel. Nodule-like oxide surface can contribute to better wettability and inhibition layer than vitreous film like oxide surface. Galvanized panels of nodule-like oxide surface steels only show pinhole sized bare spots, while panels galvanized from vitreous film-like oxide surface steels reveal larger areas of bare spots and uncoated areas. Inhibition layer observed in galvanized panels of nodule-like oxide surface steels is compact but not homogeneous; some inhibition layer grains are fine, and others are coarse, while the inhibition layer grains of panels galvanized from vitreous film-like oxide surface steels have a non-compact morphology with some particularly fine equiaxed crystals which developed deficiently.
Focusing on improving the galvanizability of the third generation automotive steel, the effect of surface ox ide morphologies on the galvanizability was studied. The results show that the surface oxide types of sample steels by X ray photoelectron spectroscopy (XPS) analysis after annealing in different conditions are the same. Only MnO, MnO2 and Cr2O3 were detected and no complex oxide exists on the surface. Morphologies of surface oxides can greatly influence the galvanizability of the third generation automotive steel. Nodule-like oxide surface can contribute to better wettability and inhibition layer than vitreous film like oxide surface. Galvanized panels of nodule-like oxide surface steels only show pinhole sized bare spots, while panels galvanized from vitreous film-like oxide surface steels reveal larger areas of bare spots and uncoated areas. Inhibition layer observed in galvanized panels of nodule-like oxide surface steels is compact but not homogeneous; some inhibition layer grains are fine, and others are coarse, while the inhibition layer grains of panels galvanized from vitreous film-like oxide surface steels have a non-compact morphology with some particularly fine equiaxed crystals which developed deficiently.