期刊文献+

一种基于局部不变特征的SAR图像配准新算法 被引量:7

A novel and efficient algorithm using local invariant feature for sar image registration
在线阅读 下载PDF
导出
摘要 针对SAR图像配准中匹配效率低、误匹配对多和配准精度差的问题,提出一种基于局部不变特征的SAR图像配准新算法.首先,使用加速分割检测特征(features from accelerated segment test,FAST)检测算法,检测SAR图像的FAST角点;使用DAISY描述子对FAST特征进行描述,得到SAR图像不变特征。其次,采用基于KD树的欧氏距离匹配策略,实现特征点对的粗匹配;采用RANSAC算法去除误匹配,实现特征点对精匹配.然后,采用仿射变换模型,实现图像插值和图像变换,实现SAR图像粗配准。最后,建立配准精度评估反馈机制,实现配准优化.通过使用不同时相、不同工作模式HJ-1C星载SAR和不同极化、不同波段机载AIRSAR图像配准实验,提出算法与经典不变特征配准算法相比,具有适配性好、配准效率高的优点. Aiming at the problems of low performance matching, more mismatching pairwise, and low registration precision, which are the characteristic of traditional SAR image registration methods, we propose a novel and efficient local invariant feature-based algorithm. First, the feature points are detected by features from accelerated segment test( FAST) method and described by DAISY descriptor in SAR image. Second, Kd-tree-based dual-matching strategy and random sample consensus ( RANSAC ) are used to establish fine feature matching. Third, affine transform model is estimated for image resampling and transformation, and rough registration is implemented. Finally, feedback mechanism is constituted for fine registration based on the estimation of registration precision. The flexibility and efficiency is demonstrated by experiments with slant range SAR images acquired from different working model, different times, viewpoints, wavelengths and polarizations.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2014年第11期112-118,共7页 Journal of Harbin Institute of Technology
关键词 成孔径雷达图像(SAR) 局部不变特征 FAST检测子 DAISY描述子 图像配准 synthetic aperture radar(SAR)image local invariant feature FAST detector DAISY descriptor image registration
  • 相关文献

参考文献20

  • 1YU Ting, LI Xiaorun. Automatic remote sensing image registration based on VTS-PCMIC algorithm [ C ]// Proceedings of Fuzzy Systems and Knowledge Discovery 2012. Trier: Computer Science Bibliography, 2012: 48-52.
  • 2ZHOU Xiaozhou, BOULANGER P. A fast hierarchical radiometrie invariant stereo matching algorithm [ C ]// Proceedings of Information Science, Signal Processing and their Applications 2012. Montreal: IEEE, 2012: 383-388.
  • 3EVANGELIDIS G D, PSARAKIS E Z. Parametric image alignment using enhanced correlation coefficient maximization [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (10) : 1858-1865.
  • 4GOSHTASBY A A. Image Registration, Advances in Computer Vision and Pattern Recognition [ M ]// London: Springer-Verlag, 2012. 40-431.
  • 5王磊,张钧萍,张晔.基于特征的SAR图像与光学图像自动配准[J].哈尔滨工业大学学报,2005,37(1):22-25. 被引量:15
  • 6王山虎,尤红建,付琨.基于大尺度双边SIFT的SAR图像同名点自动提取方法[J].电子与信息学报,2012,34(2):287-293. 被引量:21
  • 7贺经纬,尤红建.基于SURF算子的SAR图像匹配改进算法研究[J].遥感技术与应用,2009,24(6):822-826. 被引量:10
  • 8MIKOLAJCZYK K, TUYFELAARS T, SCHMID C, et al. A comparison of affine region detectors [ J ]. International Journal of Computer Vision, 2004, 65 (1-2) : 43-72.
  • 9LOWE D G. Object recognition from local scale-invariant features [ C ]//Proceedings of the Computer Vision 1999. Kerkyra: IEEE, 1999:1150-1157.
  • 10BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features ( SURF ) [ J ]. Computer Vision and Image Understanding, 2008, 110: 346-359.

二级参考文献42

  • 1杨莉,张弘,李玉山.一种快速自适应RSUSAN角点检测算法[J].计算机科学,2004,31(5):198-200. 被引量:23
  • 2Rafael C G, Richard E W. Digital Image Processing[ M]. Beijing:Publishing House of Electronics Industry,2004.
  • 3Lowe D G. Object Recognition from Local Scale-invariant Features[C]. International Conference on Computer Vision. Corfu,Greece, 1999,1150-1157.
  • 4Perona P,Malik J. Scale-space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(7) :629-639.
  • 5Bay H,Tuytelaars T,Van Cool L. Surf:Speeded up Robust Features [C]. European Conference on Computer Vision,2006,1:404-417.
  • 6Tomasi C and Manduchi R. Bilateral filtering for gray and color images[C]. Proc. International Conference on Compute Vision, Bombay, India, 1998:839-846.
  • 7Peroma P and Malik J. Scale space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629- 637.
  • 8Liu C, Yuen J, and Torralba A. SIFT flow: dense correspondence across scenes and its applications][J]. IEEE Transaetions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978-994.
  • 9Lei H and Zhen L. Feature-based image registration using the shape context[J]. International Journal of Remote Sensing, 2010, 31(8): 2169-2177.
  • 10Martin V, Mar fill R, and Bandera A. Affine image region detection and description [J]. Journal of Physical Agents, 2010, 4(1): 45-54.

共引文献50

同被引文献62

引证文献7

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部