期刊文献+

改进的OIF和SVM结合的高光谱遥感影像分类 被引量:15

Hyperspectral remote sensing image classification based on improved OIF and SVM algorithm
原文传递
导出
摘要 文章提出了一种结合改进的最佳指数法(OIF)和支持向量机(SVM)进行高光谱遥感影像分类新方法。利用本文提出的稳定系数进行波段初选择,根据相关系数选择波段组合生成新影像,并对新影像进行OIF计算,得到OIF值最大的波段组合为最佳波段组合;构建SVM分类器,对最佳波段组合分类;最后将分类结果与其他监督分类方法比较,并在相同核函数下与PCA和SVM结合的方法进行精度比较分析。实验结果表明,本文方法能够有效提取最佳波段组合,在SVM算法下获得较高分类精度。 A novel method was developed to classify hyperspectral remote sensing images based on im- proved Optimum Index Factor (OIF) and Support Vector Machine (SVM) algorithm in the paper. First, a steady coefficient was proposed to select initial bands. Second, some bands according to the correlation be- tween the remaining bands and the initial bands were selected to produce the new image. Third, the OIF was calculated for the new image, and found that the best band combination was with the maximum OIF value. Then, the best band combination was classified by SVM with "One-Against-One" classification strategy. Finally, the comparison between the accuracies of the classification and other supervised classifi- cations was carried out. The experimental results indicated that the optimal classification bands combina- tion could be effectively obtained with higher accuracy of classification by SVM algorithm.
作者 张磊 邵振峰
出处 《测绘科学》 CSCD 北大核心 2014年第11期114-117,66,共5页 Science of Surveying and Mapping
基金 国家973计划重点项目(2010CB731801) 国家自然科学基金项目(61172174) 重大科技专项(2012YQ16018505 2013BAH42F03) 国家海洋局数字海洋科学技术重点实验室开放基金资助(KLDO201307)
关键词 高光谱 最佳指数法 支持向量机 遥感影像分类 hyperspectral Optimum Index Factor (OIF) Support Vector Machine (SVM) remotesensing image classification
  • 相关文献

参考文献4

二级参考文献52

  • 1何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究[J].红外与毫米波学报,2006,25(3):192-194. 被引量:65
  • 2黄敏,何勇,黄凌霞,楼程富.基于可见—近红外光谱技术的家蚕蚕种鉴别方法的研究[J].红外与毫米波学报,2006,25(5):342-344. 被引量:19
  • 3Chang C-I.Hyperspectral imaging:techniques for spectraldetection and classification[M].New York:Plenum,2003.
  • 4Guyon I,Elisseeff A.An introduction to variable and fea-ture selection[J].J.Mach.Learn.Res.,2003,3:1157-1182.
  • 5Keshava N.Distance metrics and band selection in hyper-spectral processing with applications to material identifica-tion and spectral libraries[J].IEEE Trans.Geosci.RemoteSens.,2004,42(7):1552-1565.
  • 6Serpico S,Bruzzone L.A new search algorithm for featureselection in hyperspectral remote sensing images[J]IEEETrans.Geosci.Remote Sens.,2001,39(7):1360-1367.
  • 7Chang C-I,Wang SConstrained band selection for hyper-spectral imagery[J].IEEE Trans.Geosci.Remote Sens.,2006,44(6):1575-1585.
  • 8Chang C-I,Du Q,Sun TL,et al.A joint band prioritizationand band-decorrelation approach to band selection for hyper-spectral image classification[J]IEEE Trans.Geosci.Re-mote Sens.,1999,37(6):2631-2641.
  • 9Qian Y,Yao F,Jia S.Band selection for hyperspectral im-agery using affinity propagation[J]IET Comput.Vis.,2009,3(4):213-222.
  • 10Frey B J,Dueck D.Clustering by passing messages be-tween data points[J].Science,2007,315:972-976.

共引文献88

同被引文献146

引证文献15

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部