期刊文献+

基于动态模糊积分的决策层融合识别算法

Decision-making level fusion target recognition algorithm based on dynamic fuzzy integral
在线阅读 下载PDF
导出
摘要 模糊积分是一种常用的信息融合方法,融合中最关键的问题是确定反映各信源重要程度的模糊测度。在此将该算法用于多传感器目标识别系统,首先介绍了Choquet模糊积分以及模糊测度的定义,再建立了基于动态模糊积分的决策层融合目标识别模型,将该过程转化为多个传感器的身份识别结果关于各自重要程度的广义Lebesgue积分。目前已有的确定模糊测度的方法几乎都只利用了训练样本的先验知识,适应性较差,难以全面地反映问题。该文在此基础上提出了一种基于动态模糊积分的决策层融合算法,可在判决过程中对结果进行动态的自适应修正,并给出了具体衡量各传感器重要程度的标准和方法。 Fuzzy integral is a common information fusion algorithm. The key problem in the fusion algorithm is to determine the fuzzy measure reflecting the importance degree of each information source. In this paper,the algorithm is used in the multi-sensor target recognition system. The definitions of Choquet fuzzy integral and fuzzy measure are described. The target recogni-tion model of decision-making level fusion based on dynamic fuzzy integral is established. The process is converted to the each sensor recognition results related to the generalized Lebesgue integral on its importance degree. Almost all the current calculating methods to determine the fuzzy measure only utilize the prior knowledge of the training samples. Their adaptability is not good enough to reflect the existing problems roundly. A decision-making level fusion algorithm based on dynamic fuzzy integral is pro-posed in this paper,which can make dynamic self-adaption correction for the results in the judging process. The specific stan-dard and method of judging the importance degree of each sensor are offered in this paper.
出处 《现代电子技术》 2014年第22期38-41,共4页 Modern Electronics Technique
关键词 模糊积分 模糊测度 决策层融合 目标识别 fuzzy integral fuzzy measure decision-making level fusion target recognition
  • 相关文献

参考文献11

  • 1付耀文,黎湘,庄钊文.一种自适应模糊密度赋值的决策层融合目标识别算法[J].电子学报,2004,32(9):1433-1435. 被引量:16
  • 2刘永祥,黎湘,庄钊文.基于Choquet模糊积分的决策层信息融合目标识别[J].电子与信息学报,2003,25(5):695-699. 被引量:17
  • 3TAHANI H, KEIIER J M. Information fusion in computer vi- sion using the fuzzy integral [J]. IEEE Transactions on SMC, 1990, 2(3) :733-741.
  • 4GADER P D, MOHANMED M A, KELLER J M. Dynamic-pro- gramming-based handwritten word recognition using the Cho- quet fuzzy integral as the match function [J]. Journal of Elec- tronic Imaging, 1996, 5(1): 15-24.
  • 5WANG Run-sheng. Quality analysis of information to be fused [C]// Proceedings of the International Conference on multi- source- muhisensor information fusion. Las Vegas, USA: [s. n.], 1998: 635-641.
  • 6CHIBEIUSHI C C, DERAVI F, MASON J S D. Adaptive clas- sifier integration for robust pattern recognition [J]. IEEE Transactions on SMC-Part B: Cyber-netics, 1999, 2(96): 902 -907.
  • 7CHO S B, KIM J H. Combining multiple neural networks by fuzzy integral for robust classification [J]. IEEE Transactions on SMC, 1995, 2(52): 380-387.
  • 8WATANACHATURAPORN P, VARSHNEY P K, ARORA M K. Multisource fusion for land cover classification using support vector machines [C]// Proceedings of 8'th International Con- ference on Information Fusion. [S.l.]: [s.n.], 2005: 614-621.
  • 9LUO H, JING F, XIE X. Combining multiple clusterings using information theory based genetic algorithm [J]. Computa- tional Intelligence and Security, 2006, 1(20): 84-89.
  • 10JEON B, LANDGREBE D A. Decision fusion approach for multitemporal classification [J]. IEEE Transactions on Geo- science and Remote Sensing, 1999, 3(37) : 1227-1233.

二级参考文献12

  • 1[3]J M Keller,P Gader,H Tahani,J H Chiang,M Mohamed.Advances in fuzzy integration for pattern recognition[J].Fuzzy Sets and Systems,1994(65):273-283.
  • 2[4]H Tahani,J M Keller.Information fusion in computer vision using the fuzzy integral[J].IEEE Trans on SMC,1990,20(3):733-741.
  • 3[5]S B Cho,J H Kim.Combining multiple neural networks by fuzzy integral for robust classification[J].IEEE Trans on SMC,1995,25(2):380-844.
  • 4[7]C C Chibelushi,F Deravi,J S D Mason.Adaptive classifier integration for robust pattern recognition[J].IEEE Trans on SMC-Part B:Cybernetics,1999,29(6):902-907.
  • 5H. Tahani, J. Keller, Information fusion in computer vision using the fuzzy integral, IEEE Trans.on SMC.. 1990. SMC-20(3). 733-741.
  • 6P. D. Gader, M. A. Mohanmed, J. M. Keller, Dynamic-programming-based handwritten word recognition using the Choquet fuzzy integral as the match function, Journal of Electronic Imaging,1996, 5(1), 15-24.
  • 7M. Sugeno, Fuzzy measure and fuzzy integrals, a survey, Fuzzy Automata and Decision Processes,New York, North-Holland, 1997, 89-102.
  • 8T. Murofushi, M. Sugeno, A theory of fuzzy measures, representations, the Choquet integral, and null sets, Journal of Math. Analysis and Applications, 1991, 32(2), 532-549.
  • 9W Runsheng, Quality analysis of information to be fused, Proceedings of the Int. Conf. on multisource-multisensor information fusion, Las Vegas, USA,1998, 635-641.
  • 10黎湘,刘永祥,付耀文,庄钊文.基于D-S证据理论的修正融合目标识别模型[J].自然科学进展(国家重点实验室通讯),2000,10(11):1040-1043. 被引量:9

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部