期刊文献+

CAT选题策略分类概述 被引量:4

An Overview and Comments of Item Selection Strategies in CAT
在线阅读 下载PDF
导出
摘要 选题是计算机化自适应测验(CAT)测试过程的关键环节,选题策略的目标是要达到较高的测量精度,同时也实现试题曝光率控制及其他测验目标的实现。本文根据选题策略的基本原理和衍生发展,将众多CAT选题策略分为五大选题策略系列:Fisher函数系列、K-LI函数系列、α分层系列、贝叶斯系列、b匹配系列;并根据测验目标(测验精度、试题曝光率控制、内容平衡、多条件约束)对这些选题策略进行了细分,并对CAT选题策略的选择思路进行归纳。 Item selection strategies is the important process of Computerized Adaptive Test(CAT). Its goal is to achieve high precision, while also taking into account for the item exposure rate control and other conditions of the test target control. Based on the mathematical principles and its main aims of item selection strategies, item selection strategies are divided into five types : ( 1 ) Fisher information function item selection strategy and its derivative strategies;(2)K -L information function item selection strategy and its derivative strate- gies ; ( 3 ) α - stratified strategy and its derivative strategies; (4) Bayesian strategies and its derivative strategies ; ( 5 ) b - matching strategies and its derivative strategies. These five types series strategies were overviewed and summarized. The author also gives the recom- mendations for item selection strategies under different test cases.
出处 《心理学探新》 CSSCI 2014年第5期446-451,共6页 Psychological Exploration
基金 江西省教育科学“十二五”规划课题(12YB052,0YB254) 江西省社会科学规划项目(13JY47) 国家自然科学基金项目(31260238) 井冈山大学人文社会科学课题(JR10030)
关键词 CAT 选题策略 Fisher函数 K-LI函数 α分层 贝叶斯选题策略 b匹配方法 CAT item selection strategies Fisher information function K -L information function α -stratified strategy Bayesian strategies b - matching strategies
  • 相关文献

参考文献64

二级参考文献173

共引文献93

同被引文献39

  • 1陈平,丁树良,林海菁,周婕.等级反应模型下计算机化自适应测验选题策略[J].心理学报,2006,38(3):461-467. 被引量:38
  • 2刘发明,丁树良.多维自适应测验初探[J].江西师范大学学报(自然科学版),2006,30(5):428-430. 被引量:2
  • 3Yen, Y., Ho, R., Laio, W., et al. An empirical evaluation of the slip correction in the four parameter logistic models with com- puterized adaptive testing[J]. Applied Psychological Measurement, 2012, 36(2): 75-87.
  • 4Sands, W. A., Waters, B. K., & Mcbride, J. R. Computerized adaptive testing. From inquiry to operation[M]. Washington, DC: American Psychological Association, 1997: 50-51.
  • 5Wagner-Menghin, M. M., & Masters, G. N. Adaptive testing for psy- chological assessment: how many items are enough to run an adap- tive testing algorithm[J]. Journal of Applied Measurement, 2013, 14 (2): 106-117.
  • 6Sympson, J. B., & Hetter, R. D. Controlling item-exposure rates in computerized adaptive testing[C]//Proceedings of the 27th annual meeting of the Military Testing Association. San Diego, CA: Navy Personnel Research and Development Center. 1985:973-977.
  • 7Chang, S. W., & Ansley, T. N. A comparative study of item exposure control methods in computerized adaptive testing[J]. Journal of Edu- cational Measurement, 2003, 40( 1 ): 71-103.
  • 8Rulison, K. L., & Loken, E. I've Fallen and I Can't Get Up: Can High Ability Students Recover from Early Mistakes in CAT? [J]. Applied Psychological Measurement, 2009, 33 (2): 83-101.
  • 9Barrada, J. R., Julio Olea, Ponsoda, V., et al. Test Overlap Rate and Item Exposure Rate as Indicators of Test Security in CATs[C/OL]. [2015-10-15]//Proceedings of the 2009 GMAC Conference on Com- puterized Adaptive Testing. http: www.psych.umn.edu/psylabs/CAT- Central/:2009.
  • 10Chang H. Psychometrics behind computerized adaptive testing[J]. Psychometrika, 2015, 80( 1 ): 1-20.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部