期刊文献+

不同制备工艺对Ti84Mo16合金弹性模量的影响 被引量:2

Influence of Processing Techniques on Elastic Modulus of Ti84MO16 Alloy
在线阅读 下载PDF
导出
摘要 针对"硬组织置换"材料的低弹性模量要求,基于粉末冶金法,探索了不同制备工艺对Ti84Mo16合金弹性模量的影响规律。结果表明:当烧结温度高于1150℃时,烧结温度对Ti84Mo16合金弹性模量影响不是太大,但1050℃烧结的Ti84Mo16合金表现出很低的弹性模量;当球磨时间小于5h,球磨时间对Ti84Mo16合金弹性模量影响不是太大,但随球磨时间增加至10h,Ti84Mo16合金弹性模量下降;球磨粉体制备工艺和原子雾化粉体制备工艺对Ti84Mo16合金弹性模量影响差异不大;在合金粉中掺杂纳米纯钛粉体,可近似地看成是一种以Ti84Mo16合金为基的纯钛颗粒增强复合材料,其弹性模量随Ti含量增加而增加,弹性模量近似满足该复合材料的混合定律。 Materials targeting for replacing hard tissue requires lower elastic modulus. By utilizing the powder metallurgy preparation technique, the influence of processing techniques on the elastic modulus of Ti84Mo 16 alloy was researched. The results show that when the sintering temperature is higher than 1150℃, the influence has rather little meaning, but 1150℃dintering temperature gets lower elastic modulus; when ball mill time is lower than 5h, the influence has rather little meaning, but 10h ball mill time gets lower elastic modulus; ball mill powder and atomization powder have basically the same elastic modulus. Ti84Mo16 ball mill powder mixed by nano-size pure Ti can increase the elastic modulus of Ti84Mo16alloy. These results have important values in medical application.
出处 《热加工工艺》 CSCD 北大核心 2014年第20期47-50,共4页 Hot Working Technology
基金 陕西省教育厅自然科学基金资助项目(09JK338)
关键词 Ti84M016合金 制备工艺 纯钛掺杂 弹性模量 Ti84Mo16 alloy processing techniques pure Ti mixing elastic modulus
  • 相关文献

参考文献5

  • 1赵明威,王晓江,WEN C E.医用Ti84Mo16合金表面改性研究[J].热加工工艺,2009,38(8):76-78. 被引量:9
  • 2赵明威,王晓江.医用钛钼合金粉末冶金制备工艺参数研究[J].热加工工艺,2009,38(6):76-79. 被引量:11
  • 3Long M, Rack H J. Titanium alloys in total joint replacement-a materials science perspective [J]. Biomaterials, 1998,19: 1621-1639.
  • 4Song Y,Xu D S, Yang R, Gua Z X. Theoretical study of the effect of alloying elements on the strength and modulus of [3-type bio-titanium alloys [J]. Mater Sci Eng,1999,A260: 269-274.
  • 5Song Y, Yang R, Gua Z X, et al. Structural Biomaterials for the 21st century[C]. Warrendale (PA):TMS,2001:273-280.

二级参考文献13

  • 1Wen C E, Yamada Y, Shimojima K, et ol. Processing and mechanical properties of autogenous titanium implant materials [J]. Journal of Materials Science: Materials in Medicine, 2002, (13): 397-401.
  • 2Marc L, Rack H J. Titanium alloys in total joint replacement a materials science perspective [J]. Biomaterials, 1998, (19): 1621-1639.
  • 3Hutmacher D W. Polymeric scaffolds in tissue engineering bone and cartilage [J]. Boimaterials,2000 ,(21):2529-2543.
  • 4Wen C E, Yamada Y, Hodgson P D. Fabrication of TiZr alloy foams for biomedical application [J]. Materials Science and Engineering,2006,(26): 1439-1444.
  • 5Sakaguchi N, Mituo N. Effect of alloying element on elastic modulus of Ti-Nb-Ta-Zr system alloy for biomedical application [J]. Materials Science Forum,2004,(2):1269- 1272.
  • 6Wen C E,Yamada Y,Shimojima K,et al. Processing and mechanical properties of autogenous titanium implant materials [J]. Journal of Materials Science: Materials in Medicine,2002, (13):397-401.
  • 7Marc L, Rack H J. Titanium alloys in total joint replacement a materials science perspective [J]. Biomaterials,1998,(19): 1621-1639.
  • 8Hutmacher D W. Polymeric scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2000, (21) : 2529-2543.
  • 9Wen C E, Yamada Y, Shimojima K, et al. Novel titanium foam for bone tissue engineering[J]. Journal of Materials Research, 2002, (117) : 2633-2639.
  • 10Ayako Oyane, Kazuo Onuma, Atsuo Ito, et ol. Formation and growth of clusters in conventional and new kings of simulated body fluid [J]. Wiley Periodicals,2002, (4): 340-348.

共引文献13

同被引文献20

  • 1Ninomi M, Kuroda, Fukunaga K,et al. Corrosion wear fracture of new β type biomedical titanium alloys [J]. Mater Sei Eng, 1999,A263 : 193-199.
  • 2Huiskes R, weinans H, Van riether B. The relationship between stress shielding and bone resorption around total hip stems and effects of flexible materials versus in terface [C]. Clin orthop relat Res, 1992,274:124-134.
  • 3Song Y, Yang R,LiD, Gua ZX, et al. Structural Biomaterials for the 21 st century[J]. Warrendale (PA),TMS: 2001,273-280.
  • 4F.V.布莱尔著,殷声,赖和怡译.粉末冶金原理和应用[M].冶金工业出版社,1989.
  • 5LomaJ.Gibson,MichaelF.Ashby.多孔固体结构与性能[M].清华大学出版社,2003.
  • 6Ninomi M, Kuroda, Fukunaga K, et al. Corrosion wear fracture of newl3 type biomedical titanium alloys[ J]. Ma- ter Sci Eng,1999,A263:193 -199.
  • 7Huiskes R, weinans H, Van rietber B. The relationship between stress shielding and bone resorption around total hip stems and effects of flexible materials versus in ter- face[ C]. Clin orthop relat Res, 1992,274 : 124 - 134.
  • 8Song Y, Yang R, LiD, Gua ZX, et al. Structural Biomateri- als for the 21't century [ J]. Warrendale (PA) , TMS: 2001,273 - 280.
  • 9F.V.布莱尔.著,殷声,赖和怡,译.粉末冶金原理和应用[M].冶金工业出版社,1989第一版:1-3,53-107,165-182,246-258,306-319.
  • 10LomaJ.Gibson,MichaelF.Ashby.多孔固体结构与性能[M].清华大学出版社,2003,第二版:1-2.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部