期刊文献+

地理位置相关移动感知系统任务分配问题研究 被引量:9

A Location-Based Task Assignment Mechanism for Mobile Phone Sensing
在线阅读 下载PDF
导出
摘要 随着智能手机应用的普及,移动感知技术已被认为是一种高效且成本低廉的环境数据收集方式.移动感知系统中地理位置相关的最优任务分配问题是一个NP难问题.为了解决该问题,提出了一种多项式时间的近似最优的任务分配算法.该算法首先引入了单位圆盘模型中移动划分的思想,将整个监测地理空间划分为若干个子区间,并使得子区间内的最优分配方案的集合是划分前最优解的1/1+ε,这表明所设计的近似算法是一个多项式时间近似机制.随后,证明了最优任务分配问题在每个子区间内是多项式时间可解的,并设计了枚举算法求出该问题的最优解.最后,仿真实验结果表明所设计的近似最优任务分配算法的实际性能与理论分析相吻合. In recent years, mobile phone sensing application has been regarded as a new paradigm which makes use of the smartphones to get the ubiquitous environment data. Most of the mobile phone sensing task assignment problems are based on the locations of the smartphone users. Unfortunately, the location-based optimal task assignment problem in mobile phone sensing system is an NP-hard problem. To solve this challenge, we study the optimal location-based task assignment problem for mobile phone sensing system, and propose a polynomial time approximation algorithm in this paper. The proposed approximation algorithm first introduces the shifting method for unit disk model into the task assignment problem of mobile phone sensing, and divides the sensing area into many sub-areas. We can prove that the union of the optimal task assignment solution in each sub-area 1 is 1/1+ε of the optimal solution in the whole area, which illustrates the presented algorithm is apolynomial-time approximation scheme (PTAS). Then, we also prove that the optimal assignment problem in each sub-area is polynomial-time solvable, and design an enumeration method to get the optimal solution in the sub-area. Finally, the simulation results show that the practical performance of the proposed near optimal task assignment algorithm corroborates the theoretical analysis.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第11期2374-2381,共8页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2011CB302905) 国家自然科学基金项目(61202028 61303206) 教育部高等学校博士学科点专项科研基金项目(20123201120010) 广东省普及型高性能计算机重点实验室开放课题(SZU-GDPHPCL-2012-01)
关键词 移动感知 任务分配 近似算法 多项式时间近似方案 划分 mobile phone sensing task assignment approximation algorithm PTAS shifting
  • 相关文献

参考文献17

  • 1Yang D, Xue G, Fang X, el al. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing[C] //Proc of the 18th Annua Computing and Networking (MOBICOM 2012). New York ACM, 2012:173-184.
  • 2Lane N D, Miluzzo E, Lu H, et al. A survey of mobile phone sensing [J]. Communications Magazine, 2010, 48 (9) : 140-150.
  • 3安健,桂小林,张文东,蒋精华,张进.物联网移动感知中的社会关系认知模型[J].计算机学报,2012,35(6):1164-1174. 被引量:22
  • 4刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41.
  • 5武建佳,赵伟.WInternet:从物网到物联网[J].计算机研究与发展,2013,50(6):1127-1134. 被引量:33
  • 6Seyed A, Alexander G, Rahim T. A survey on smartphone based systems for opportunistic user context recognition [ J]. ACM Computing Surveys (CSUR), 2013, 45(3) : 1-51.
  • 7Thiagarajan A, Ravindranath L, I.aCurts K, et at. VTrack: Accurate, energy-aware road traffic delay estimation using mobile phones [C ]//Proc of the 7th ACM Conf on Emhedded Networked Sensor Systems (Sensys 2009). New York: ACM, 2009:85-98.
  • 8Rana R K, Chou C T, Kanhere S S, et al. Ear phone: An end-to end participatory urban noise mapping system [C] // Proc of the 9th ACM/IEEE Int Conf on Information Processing in Sensor Networks (IPSN 2010). New York: ACM, 2010:105-116.
  • 9Eriksson J, Girod L, Hull B, et al. The pothole patrol: Using a mobile sensor network for road surface monitoring [C] //Proc of the 6th Int C, onf on Mobile Systems (MobiSys 2008). New York: ACM, 2008: 29-39.
  • 10Matyas S, Matyas C, Schlieder C, et al. Designing location based mobile games with a purpose: Collecling geospatial data with city explorer [C] //Proc of the Int Conf o11 Advances in Computer Entertainment Technology (ACI 2008). New York: ACM, 2008:244-247.

二级参考文献30

  • 1李小勇,桂小林.大规模分布式环境下动态信任模型研究[J].软件学报,2007,18(6):1510-1521. 被引量:138
  • 2李小勇,桂小林,赵娟,冯大鹏.一种可扩展的反馈信任信息聚合算法[J].西安交通大学学报,2007,41(8):879-883. 被引量:9
  • 3Atzori L, Iera A, Giaeomo M. The Internet of Things: A survey. Computer Networks, 2010, 54(15): 2787-2805.
  • 4Lazer D, Pentland A, Adamic L et al. Computational social science. Science, 2009, 323(5915:721-723.
  • 5Subrahmanian V S. Cultural modeling in real time. Science, 2007, 317(5844):1509-1510.
  • 6Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding individual human mobility patterns. Nature, 2009, 458 (7235) :238-239.
  • 7Grossetti M. Where do social relations come from? A study of personal networks in the Toulouse area of France. Social Networks, 2005, 27(4): 289-300.
  • 8Newman M. Modularity and community structure in net- works. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582.
  • 9Girvan M, Newman M. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821- 7826.
  • 10Ogatha H, Yano Y, Jin Q et al. Computer supported social networking for augmenting cooperation. Computer Supported Cooperative Work, 2001, 10(2): 189-209.

共引文献70

同被引文献35

  • 1Lin Liao, Donald J Patterson, Dieter Fox, and Henry Kautz.Learning and inferring transportation routines[J]. Artificial Intelligence,171(5): 311-331, 2007.
  • 2Sapana Singh, Pratap Singh. Key Concepts and Network Architecturefor 5G Mobile Technology [J]. International Journal ofScientific Research Engineering & Technology (IJSRET) Volume1 Issue 5 pp 165-170 August 2012.
  • 3A. Ksentini. IPv6 over IEEE802.16 (WiMAX) networks: Facts andchallenges[J]. Journal of Communications, vol. 3, no. 3, July 2008.
  • 4Peter Mell,Timothy Grance.The NIST Definition of Cloud Computing[R].National Institute of Standard and Technology,US Departmentof Commerce,2011:2.
  • 5S. Hossain. “ 5G Wireless Communication Systems”AmericanJournal of Engineering Research[C]. IEEE International Conferenceon Computer, 2015.
  • 6Ying-Chang Liang, Geoffrey Ye Li. Cognitive Radio Networkingand Communications: An Overview [J]. IEEE Transactions onVehicular Technology, vol. 60, no. 7, September 2011.
  • 7Saurabh Patel, Malhar Chauhan and Kinjal Kapadiya.5G: FutureMobile Technology-Vision 2020 [J]. International Journal ofComputer Applications, 2012.54(17):6-10.
  • 8Mustafa E. sahin, H俟seyin Arslan.System Design for CognitiveRadio Communications[C]. 1-4244-0381 -2/06 2006 IEEE.
  • 9Cornelia-Ionela Badoi, Neeli Prasad, Victor Croitoru and RamjeePrasad .5G Based on Cognitive Radio [J]. Wireless PersonalCommunications An International Journal, 2011, 57(3):441-464.
  • 10Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, andZhenghua Xu. Destination prediction by sub-trajectory synthesisand privacy protection against such prediction[C]. In Proc. IEEE29th International Conference on Data Engineering, ICDE, 2013.

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部