期刊文献+

一种基于特征选择的SVM Bagging集成方法 被引量:9

An SVM Bagging Ensemble Learning Algorithm Based on Feature Selection
在线阅读 下载PDF
导出
摘要 针对传统支持向量机(Support Vector Machine,SVM)集成学习(Ensemble Learning,EL)方法不能够解决高维复杂数据且子学习器差异性小集成效果不明显的问题,提出一种基于多种特征选择方法进行Bagging集成的支持向量机学习(Support Vector M achine Based on M ultiple Feature Selection Bagging,M FSB_SVM)方法.该方法首先采用不同的特征选择方法构建子学习器,以增加不同子学习器间的差异性,并直接从训练数据中对样本特征的重要性进行评估,而无需学习算法的反馈.实验表明,本文提出的MFSB_SVM方法既可以有效解决高维数据问题,也可避免传统SVM集成方法效果不明显的缺点,从而进一步提高学习模型的泛化性能. An SVM bagging ensemble learning algorithm based on feature selection is proposed. The differences of sub-SVM learners are enhanced by different feature selection techniques, and the iteration process of SVM learning is not necessary because the impor- tance of each feature can be directly estimated from the given data. Experimental results on benchmark datasets demonstrate that the proposed approach can not only solve the high dimensional problems, but also avoid the drawback of bagging on SVM learning. In so doing ,the generalization performance can be improved efficiently.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第11期2533-2537,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60975035 61273291 61273294)资助 山西省回国留学人员科研基金项目(2012-008)资助 山西省科技厅基础条件平台项目(2012091003-0104)资助 山西省研究生教育创新项目(20133001)资助
关键词 支持向量机 集成学习 特征选择 Bagging方法 support vector machine ensemble learning feature selection Bagging method
  • 相关文献

参考文献2

二级参考文献17

  • 1逄锦忠,钦伦秀,汤钊猷.人类基因组单核苷酸多态性及其医学应用[J].肿瘤,2005,25(4):401-403. 被引量:3
  • 2王威,夏昭林.人类基因组单核苷酸多态性研究与疾病三级预防体系[J].国外医学(卫生学分册),2006,33(6):321-325. 被引量:5
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4黄卫.加强技术风险管理,确保地铁工程建设安全[C]//2005地铁与地下工程技术风险管理研讨会.北京:[出版者不详],2005.
  • 5赵萤.支持向量机中高斯核函数的研究[D].上海:华东师范大学,2007.
  • 6邹喻萍 葛颂.新一代分子标记-sNPs及其应用.BiodJ-versity Science,2003,11(5):370-382.
  • 7SHAH S C, KUSIAK A. Data mining and genetic algorithm based on gene/SNP selection [ J ]. Artificial Intelligence in Medicine, 2004, 31 : 183-196.
  • 8PARDI F, LEWIS C M, WHITTAKER J C. SNP selection for association studies: maximizing power across SNP choice and study size [ J ]. Annals of Human Genetics,2005,69 (6) :733- 746.
  • 9PHUONG T M, LIN Z, ALTMAN R B. Choosing SNPs using feature selection[ J]. Journal of Bioiniormaties and Computational Biology,2006,4(2) :241-257.
  • 10KIRA K, RENDELL L A. The feature selection problem : traditonal methods and a new algorithm[ C ]//Proc of the 10th National Conference on Artificial Intelligence. Michigan: AAAI Press, 1992: 129- 134.

共引文献24

同被引文献71

  • 1姜远,周志华.基于词频分类器集成的文本分类方法[J].计算机研究与发展,2006,43(10):1681-1687. 被引量:22
  • 2李旭升,郭耀煌.基于朴素贝叶斯分类器的个人信用评估模型[J].计算机工程与应用,2006,42(30):197-201. 被引量:7
  • 3DEAN J,GHEMAWAT S. Mapreduce: simplified data processing on large clusters[J]. Communications of lhe ACM,2008,51(1) :107-113.
  • 4BISHOP C M. Neural networks for pattern recognition [M]. Oxford University Press, 1995.
  • 5RODRIGUES D,PEREIRA I. A M,NAKAMURA R Y M,et al. A wrapper approach for feature selection based on bat algorithm and optimum-path forest [J]. Expert Systems with Applications, 2014,41 (5) : 2250-2258.
  • 6CHUANG L Y,YANG C H,LI J C,et al. A hybrid BP SO-CGA approach for gene selection and classification of microarray dala[J]. Journal of Computational Biolo gy,2012,19(1) :68-82.
  • 7PENG Yonghong, WU Zhiqing, J IANG Jianmin. A novel feature selection approach for biomedical data classifica tion [J]. Journal of Biomedical Informatics, 2010,43: 15-23.
  • 8ZHOU Liuhong,LIU Yanhua,CHEN Guolong. A fea ture selection algorithm to intrusion detection based on cloud model and multi-objective particle swarm optimi-zation [C]//2011 Fourth International Symposium on Computational Intelligence and Design. New Jersey: IEEE Press,2011 : 182-185.
  • 9ZHAO Junmin,ZHANG Kai, WAN Jian. Research of feature selection for text clustering based on cloud model [J]. Journal of Software, 2013, 8 (12): 3246- 3252.
  • 10SUN Zhanquan,ZHAO Li. Data intensive parallel fea- ture selection method study[C]//2014 International Joint Conference on Neural Networks. New Jersey: IEEE Press,2014:2256-2262.

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部