期刊文献+

引入反向传播机制的概率神经网络模型 被引量:9

Introducing the back-propagation into probabilistic neural network
原文传递
导出
摘要 既有的概率神经网络模型存在概率函数难以估计和空间复杂度高的缺点,提出引入反向传播机制的改进模型用以弥补以上不足。改进模型继承了概率神经网络模型的分类原理和结构特征,同时应用了多层感知器神经网络模型的反向传播算法进行函数估计和参数学习,由此解决了函数估计和空间复杂度高的问题。通过三组数值实验的验证,结果表明该模型还有着较强的输入指标重要性的识别能力和较高的分类精度。该改进模型是一个新的、适用范围较广和准确度较高的模式分类方法,可辅助管理决策,具有实际意义。 Due to the difficulty of estimating probability function and the high space complexity of the existing probabilistic neural network (PNN), an improved PNN model is presented by introducing the mechanism of back-propagation (BP). The improved model inherits the principle and structure of PNN, and meanwhile applies the BP algorithm of multilayer perceptron (MLP) to train probability function and parameters. The above two aspects help overcome the PNN's shortcomings. Three numerical experiments have been designed to verify the improved model, and their results indicate that the new model has strong capacity to identify the hnportance of input indicators and own high accuracy of classification. In conclusion, the BP-PNN model is a new pattern classification method with widespread applicability and can support management decision.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第11期2921-2928,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71271070)
关键词 决策分析 模式分类 概率神经网络 反向传播算法 decision analysis classification probabilistic neural network back-propagation algorithm
  • 相关文献

参考文献19

  • 1Specht D F. Probabilistic neural networks[J]. Neural Networks, 1990, 3(1): 109-118.
  • 2Hojjat A, Ashif P. A probabilistic neural network for earthquake magnitude prediction[J]. Neural Networks, 2009, 22(7): 1018-1024.
  • 3唐明珠,阳春华,桂卫华,谢永芳.代价敏感概率神经网络及其在故障诊断中的应用[J].控制与决策,2010,25(7):1074-1078. 被引量:17
  • 4Mehdi K, Mehdi B. Hybridization of the probabilistic neural networks with feed-forward neural networks for forecasting[J]. Engineering Applications of Artificial Intelligence, 2012, 25: 1277-1288.
  • 5庞素琳.概率神经网络信用评价模型及预警研究[J].系统工程理论与实践,2005,25(5):43-48. 被引量:21
  • 6靳玉萍,李保霖.基于遗传优化径向基概率神经网络的岩性识别应用[J].计算机应用,2013,33(2):353-356. 被引量:8
  • 7Savchenko A V. Probabilistic neural network with homogeneity testing in recognition of discrete patterns set[J]. Neural Networks, 2013, 46: 227-241.
  • 8James O B. Statistical decision theory and Bayesian analysis[M]. Spring-Verlag, New York, 1985.
  • 9Thierry D. A K-nearest neighbor classification rule based on Dempster-Shafer theory[J]. Studies in Fuzziness and Soft Computing, 2008, 21(9): 737-760.
  • 10Yang Z R, Marjorie B P, Harlan D P. Probabilistic neural networks in bankruptcy prediction[J]. Journal of Business Research, 1999, 44(2): 67-74.

二级参考文献27

共引文献65

同被引文献66

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部