期刊文献+

一种改进混沌萤火虫算法 被引量:10

An Improved Firefly Algorithm for Solving Multimodal Functions
在线阅读 下载PDF
导出
摘要 萤火虫算法是一种新型的进化算法,虽然全局寻优能力较强,但是也存在后期收敛速度慢、易于早熟、求解精度低的缺陷。为了克服以上缺陷,利用混沌序列设计了两种新颖的混沌局部搜索算子,第一种混沌局部搜索算子针对种群中最优解进行局部搜索,第二种混沌局部搜索算子针对种群中较优解进行局部搜索,在此基础上进而提出了两种改进混沌萤火虫算法,并进行了一系列比较研究。仿真结果表明,两种改进算法均显著优于基本FA算法,与其它改进萤火虫算法相比也具有一定优势,是目前最优秀的改进萤火虫算法之一。 Firefly algorithm, is a novel evolutionary algorithm with the shortcomings of low convergence speed, easily falling into local optima and lower solution accuracy. A local search operator was designed based on chaos se- quences in the paper. Then, two novel improved chaotic firefly algorithms were proposed. Simulation results show that both improved algorithms are significantly better than those of FA algorithm, and IFA2 is one of the best im- proved firefly algorithms. Large amount utility of digital data brings about many maladies for the multimedia information's security.
出处 《计算机仿真》 CSCD 北大核心 2014年第10期306-312,共7页 Computer Simulation
基金 国家自然科学基金面上项目(71272241) 河南省教育厅项目(14A630029 13B520878) 河南省科技厅软科学项目(132400410059) 郑州市科技攻关项目(编号20120431)
关键词 萤火虫算法 进化算法 优化 Firefly algorithm(FA) Evolution algorithm Optimization
  • 相关文献

参考文献15

  • 1X S Yang. Nature - Inspired Metaheuristic Algorithms[ M]. Luni-ver Press,2008.
  • 2N Chai - Ead,P Aungkulanon,P Luangpaiboon. Bees and Fireflyalgorithms for noisy non - linear optimization problems [ C ]. HongKong, 2011.
  • 3Sukasik, Sak. Firefly Algorithm for Continuous Constrained Opti-mization Tasks [ M ]. Computational Collective Intelligence. Se-mantic Web,Social Networks and Multiagent Systems,Nguyen N,Kowalczyk R, Chen S, Springer Berlin Heidelberg, 2009:5796,97-106.
  • 4AH Gandomi, et al. Firefly algorithm with chaos [ J ]. Communi-cations in Nonlinear Science and Numerical Simulation, 2013,18(1):89 -98.
  • 5冯艳红,刘建芹,贺毅朝.基于混沌理论的动态种群萤火虫算法[J].计算机应用,2013,33(3):796-799. 被引量:71
  • 6刘长平,叶春明.具有混沌搜索策略的萤火虫优化算法[J].系统管理学报,2013,22(4):538-543. 被引量:24
  • 7S M Farahani, et al. Some hybrid models to improve Firefly algo-rithm performance [ J ]. International Journal of Artificial Intelli-gence, 2012,8(S12):97-117.
  • 8M H Homg, R J Liou. Multilevel minimum cross entropy thresholdselection based on the firefly algorithm [ J]. Expert Systems withApplications. 2011.
  • 9M K Sayadi,R Ramezanian, N Ghaffari - Nasab. A discrete fireflymeta - heuristic with local search for makespan minimization inpermutation flow shop scheduling problems[ J]. International Jour-nal of Industrial Engineering Computations. 2010,1(1) :1 - 10.
  • 10A Theofanis, V Aristidis. Application of the Firefly Algorithm forSolving the Economic Emissions Load Dispatch Problem[ J]. In-ternational Journal of Combinatorics. 2010,2011.

二级参考文献34

  • 1彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 2金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529. 被引量:52
  • 3孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 4高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 5张波,陈睿君,路璐.粒子群算法在投资组合中的应用[J].系统工程,2007,25(8):108-110. 被引量:17
  • 6Krishnanand K N, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics[C]//Proceedings of IEEE Swarm Intelligence Symposium. Piscataway, USA: IEEE Computer Society, 2005:84- 91.
  • 7Yang Xin She. Nature inspired metaheuristic algorithms[M]. Frome: Luniver Press, 2008: 83- 96.
  • 8Krishnanand K N, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions [J].Swarm Intelligence, 2009, 3(2): 87-124.
  • 9Yang Xin-She. Firefly algorithm, stochastic test functions and design optimisation [J]. International Journal of Bio-Inspired Computations, 2010, 2(2): 78-84.
  • 10Mohammad K S, Reza R, Nader G N. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems [J]. International Journal of Industrial Engineering Computations, 2010, 1(1): 1-10.

共引文献232

同被引文献99

  • 1高洪元,崔闻.文化蛙跳算法及其在频谱感知中的应用[J].中南大学学报(自然科学版),2013,44(9):3723-3730. 被引量:3
  • 2王若鹏.非线性l_1问题的调节熵函数法[J].纯粹数学与应用数学,2004,20(4):372-375. 被引量:12
  • 3江善和,王其申,江巨浪.一种新型Skew Tent映射的混沌混合优化算法[J].控制理论与应用,2007,24(2):269-273. 被引量:17
  • 4王燕.反向粒子群算法理论及及其应用研究[D].西安:西安工程大学理学院,2011.
  • 5Eusuff M M, Lansey K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J J. Journal of Water Re- sources Planning and Management, 2003, 129 (3) : 210 - 225.
  • 6Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms[ J]. Advanced Engineering Informatics, 2005, 19(1) : 43 -53.
  • 7Amiri B, Fathian M, Maroosi A. Application of shuffled frog-leaping algorithm on clustering[ J]. International Journal of Advanced Manufac- turing Technology, 2009, 45 (1/2) : 199 - 209.
  • 8Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly llne sequencing problem [ J]. Computers and Industrial Engineering, 2007, 53 (4) : 642 - 666.
  • 9Rahimi-Vahed A, Mirzaei A H. Solving a bi-criteria pemnutation flow-shop problem using shuffled frog-leaping algorithm[ J]. Soft Computing, 2008, 12(5) : 435 -452.
  • 10Bhaduri A. A clonal selection based shuffled frog leaping algorithm[ C ]//IEEE International Conference on Advance Computing. Piscataway, UJ, USA: IEEE, 2009:125-130.

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部