期刊文献+

精密设备主动SAWPSO-PID振动控制器设计及仿真研究 被引量:1

Design and simulation of active SAWPSO-PID vibration controller of precision equipment
在线阅读 下载PDF
导出
摘要 比例-积分-微分(PID)控制器具有简单、稳定性好、可靠性高、鲁棒性强等特点,在振动控制领域应用广泛。而传统的主动PID控制器参数以假设或经验性选取为主,不科学且不能充分发挥控制器性能。自适应权重粒子群算法(self-adaptive weight particle swarm optimization,简称SAWPSO)克服了传统粒子群算法寻优过程的早熟情况,能使PSO算法达到局部及全局最优的平衡。文章基于SAWPSO算法,设计了SAWPSO-PID控制器,以时间乘以误差绝对值积分(ITAE)为目标适应值函数,对精密设备振动进行了PID参数自整定的优化控制研究,并与经验型参数选定PID振动控制、被动隔振(无控)进行了对比分析。 Proportional-integral-derivative(PID) controller has characteristics of simplicity ,good stability ,high reliability ,strong robustness ,etc ,so it is widely used in the field of vibration control of precision equipment . The parameters of traditional active PID controllers are often based on the assumption or empirical selection , which is unscientific and can not give full play to the performance of controllers .Self-adaptive weight particle swarm optimization(SAWPSO ) overcomes the precocious situation of the traditional particle swarm optimiza-tion ,and it can achieve the local and global optimum balance .In this paper ,the SAWPSO-PID controller is designed based on the SAWPSO ,and the objective function is the integral of time-weighted absolute error (ITAE ) .The PID parameters self-tuning optimization of precision equipment vibration control is studied ,and the comparative analysis with empirical PID parameters selection and passive isolation(uncontrolled) is presented .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第10期1153-1157,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51078123 51179043)
  • 相关文献

参考文献13

  • 1Cho G B,Kim P H. A precise control of AC servo motor u- sing neural network PID controller [J]. Current Science, 2005,89(1):23-26.
  • 2Kennedy J, Eberhart R C. A new optimizer using particle swarm theory[C]//6th International Symposium on Micro- machine and Human Science, 1995 : 39-43.
  • 3Shi Y, Eberhart R. A modified particle swarm optimizer [C]//IEEE World Congress on Computational Intelligence, 1998:69-73.
  • 4李军,许丽佳,游志宇.一种带压缩因子的自适应权重粒子群算法[J].西南大学学报(自然科学版),2011,33(7):118-122. 被引量:13
  • 5Mizutani K,Fujita Y,Ohmori H. Hybrid control system for micro-vibration isolation[M]//Advanced Motion Control, Vol 2,1996 = 577- 582.
  • 6陈亚良,傅龙珠,梅德庆,陈子辰.超精密装置PID振动控制系统的仿真研究[J].工程设计学报,2003,10(1):15-19. 被引量:7
  • 7王加春,李旦,董申.超精密机床溜板的模糊-PID振动主动控制研究[J].燕山大学学报,2001,25(1):57-60.
  • 8Gaing Z L. A particle swarm optimization approach {or opti- mum design of PID controller in AVR system[J]. Energy Conversion, 2004,19 (g) : 384 -391.
  • 9Nasri M. A PSO:based optimum design of PID controller for a linear brushless DC motor[J]//Proceedings of World A- cademy of Science, Engineering and Technology, 2007,20: 211- 215.
  • 10Wang X L,Wang Y J,Zerg H T,et al. PSO-PID: a novel controller for AQM routers [C]//Wireless and Optical Communications Networks, 2006 IFIP International Con- ference on IEEE, 2006 : 1-5.

二级参考文献19

  • 1汪镭,康琦,吴启迪.群体智能算法总体模式的形式化研究[J].信息与控制,2004,33(6):694-697. 被引量:8
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 4庄表中 李小平.Bionics and vibration[J].Vibration and Impulsion(振动与冲击),1997,16(1):84-85.
  • 5KENNEDY J, EBERHART R. Particle Swarm Optimization [C]//Proc IEEE International Conference on Neural Networks. New York: IEEE Computer Society Press, 1995: 1942--1948.
  • 6WANG Bo, LIANG Guo-Qiang, WANG Cha-Lin. A New Kind of Fuzzy Particle Swarm Optimization FUZZY_PSO Al- gorithm [C]//lst International Symposium on Systems and Control in Aerospace and Astronautics. New York: IEEE Computer Society Press, 2006:309--311.
  • 7KAZEMI B A L, MOHAN C K. Multi-Phase Generalization of the Particle Swarm Optimization Algorithm [C]// Proc of the IEEE Int'l Conf on Evolutionary Computation. New York: IEEE Computer Society Press, 2002:489 494.
  • 8SHI Y, EBERHART R A. Modified Particle Swarm Optimizer[C]//IEEE World Congress on Computational Intelli gence. New York: IEEE Computer Society Press, 1998:69-73.
  • 9CLERC M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization [C]// Proceedings of the Congress on Evolutionary Computation. New York: IEEE Computer Society Press, 1999: 1951--1957.
  • 10VAN DEN BERGH F. An Analysis of Particle Swarm Optimizers [D]. Pretoria: University of Pretoria, 2002.

共引文献18

同被引文献10

  • 1杨刚,姚华.实用航空发动机LQR权阵选取方法[J].南京航空航天大学学报,2006,38(4):403-407. 被引量:9
  • 2Crocker M J, Fuller C. Active vibration control [M]//Hand- book of Noise and Vibration Control. John Wiley &. Sons, 2007 : 770 - 784.
  • 3Khot S M, Yelve N P, Toner R, et al. Active vibration control of cantilever beam by using PID based output feedback control- ler [J]. Journal of Vibration and Control, 2012,18(3):366- 372.
  • 4Gudu R. Sliding mode and PID control of a structural system a- gainst earthquake [J]. Mathematical and Computer Modelling, 2006,44(1):210-217.
  • 5Fan G W, Nelson H D, Crouch P E, et al. LQR-based least- squares output feedback control of rotor vibrations using the complex mode and Balanced realization methods [J]. Journal of Engineering for Gas Turbines and Power, 1993,115(2) ; 314- 323.
  • 6Zhang J, He L, Wang E, et al. A LQR controller design for ac- tive vibration control of flexible structures[C]//Pacific-Asia Workshop on Computational Intelligence and Industrial Appli- cation, 2008 : 127- 132.
  • 7Eberhart R C, Kennedy j. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Vol 1,1995:39-43.
  • 8Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system [J]. IEEE Transactions on Energy Conversion, 2004,19 (2) : 384- 391.
  • 9Amini F,Hazaveh N K,Rad A A. Wavelet PSO-based LQR al- gorithm for optimal structural control using active tuned mass dampers [J]. Computer-Aided Civil and Infrastructure Engi- neering,2013,28(7):542-557.
  • 10Farshidiardar A, Saghafi A, Kalami S M, et al. Active vibration isolation of machinery and sensitive equipment using H∞ control criterion and particle swarm optimization method[J]. Meccanica, 2012,47(2) :437-453.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部