摘要
由于MIMO-OFDM系统中载波频偏、采样频偏、符号定时误差等多个同步参数及信道的影响,文中提出一种同步参数与信道的最大似然(ML)联合估计算法。稀疏衰落的情况下,该算法使用基于压缩感知(CS)的信道估计,通过较少的接收样值来恢复稀疏信道,以降低复杂度。仿真中通过数值模拟对估计性能进行分析。结果表明,该算法在保持较低复杂度的同时,可获得理想的性能。
A maximum likelihood (ML) algorithm for joint estimation is proposed to estimate the parameters in sparse channel for MIMO-OFDM system.The proposed algorithm uses a compressed sensing (CS)technique in a sparse fading scenario to recover the sparse channel by fewer receiving samples,thus reducing complexity of the algorithm.The performances of the joint estimation are analyzed through numerical simulations.Simulation results show that the algorithm can provide the ideal performance while maintaining lower complexity.
出处
《南京邮电大学学报(自然科学版)》
北大核心
2014年第4期94-98,共5页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
重庆市教委科学技术研究(KJ131208)资助项目
关键词
频偏
符号定时误差
压缩感知
信道估计
frequency offset
symbol timing error
compressed sensing(CS)
channel estimation