期刊文献+

不同掺杂浓度Tm^(3+):LiLuF_4单晶的1800nm荧光发射(英文) 被引量:2

Fluorescent Emissions(1800 nm) of LiLuF_4 Single Crystals Doped with Various Tm^(3+) Concentrations
在线阅读 下载PDF
导出
摘要 采用坩埚下降法生长了Tm3+掺杂浓度为0.45%,0.90%,1.63%与3.25%(摩尔分数,x)的LiLuF4单晶.测试了样品的电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)谱、吸收光谱(1400-2000 nm),并且分析比较了808 nm半导体激光器(LD)激发下荧光光谱.结果表明:当Tm3+的浓度从0.45%变化到3.25%时,1800 nm处的荧光强度呈现了先增后减的趋势,当掺杂浓度约为0.90%时达到最大值,而位于1470 nm处的荧光强度则呈现了相反的趋势.Tm3+:3F4能级的荧光衰减寿命随着掺杂浓度的增加不断减小.1800 nm处的这种荧光强度变化归结于Tm3+离子间的交叉驰豫效应(3H6,3H4→3F4,3F4)和自身的浓度猝灭效应.同时计算得到了浓度为0.90%的样品在1890 nm处的最大发射截面为0.392×10-20cm2.并且根据Judd-Ofelt理论所得寿命和测定的荧光寿命计算得到了3F4→3H6的最大量子效率约为120%. LiLuF, single crystals doped with molar fractions of 0.45%, 0.90%, 1.63%, and 3.25% (x, molar fraction) Tm^3+ ions were fabricated by an improved Bridgman method. Absorption spectra in the 400-2000 nm region of the crystals were measured. The emissions from 1400 to 2000 nm under excitation of an 808-nm laser diode (LD) were carried out and compared. Two emission bands at 1470 and 1800 nm were observed. First, the emission intensity at 1800 nm increased with the increase in Tm^3+ concentration, reaching a maximum value when the Tm3. concentration was ca 0.90%. Thereafter, it decreased considerably as the Tm^3+ doping levels further increased to 3.25%. However, the emission intensity at 1470 nm showed the contrary tendency to that at 1800 nm. It was found that the 1800-nm emission lifetime of the Tm3+:3F, manifold systematically decreased with an increase in Tm^3+concentration. The trend in the fluorescent intensity change can be explained by the cross-relaxation (3H8, 3H4→3F4, 3F,) between the Tm3. ions and the concentration quenching effect of Tm^3+. Meanwhile, the emission cross-section was calculated, providing a maximum of 0.392×10^-20 cm2 at 1890 nm for the 0.90% doped sample. Based on the measured lifetime and calculated radiative lifetime, the largest quantum efficiency between Tm3. ions reached -120%.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第9期1752-1757,共6页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(51272109) Natural Science Foundation of Ningbo City,China(201401A6105016,2013A610126) K.C.Wong Magna Fund in Ningbo University,China(NBUWC001)~~
关键词 TM^3+ LiLuF4单晶 交叉驰豫 荧光强度 浓度猝灭 Tm^3+-doped LiLuF4 crystal Cross-relaxation Fluorescent intensity Concentrationquenching
  • 相关文献

参考文献1

二级参考文献19

  • 1臧竞存.钨酸盐闪烁单晶材料的现状和发展[J].材料导报,1995,9(6):35-38. 被引量:19
  • 2陆燕玲,王俊,杨扬,董安平,孙宝德.Tm∶YAP激光晶体的生长[J].上海交通大学学报,2006,40(5):864-868. 被引量:1
  • 3Wu Jianfeng,Jiang Shibin,Luo Tao. Efficient thulium-doped ~2 μm germanate fiber laser[J].IEEE Photonics Technology Letters,2006,(02):334-336.
  • 4Ishii M,Kobayashi M. Single crystals for radiation detector[J].Progress in Crystal Growth and Characterization of Materials,1991.245-311.
  • 5Pustovarov V A,Krymov A L,Shulgin B V. Some peculiarities of the luminescence of inorganic scintillators under excitation by high intensity synchrotron radiation[J].Review of Scientific Instruments,1992,(06):3521-3522.
  • 6Garces N Y,Chirila M M,Murphy H J. Absorption,luminescence,and electron paramagnetic resonance of molybdenum ions in CdWO4[J].Journal of Physics and Chemistry of Solids,2003,(07):1195-1200.doi:10.1016/S0022-3697(03)00049-0.
  • 7Lammers M J,Blasse G,Robertson D S. The luminescence of cadmium tungstate (CdWO4)[J].Phys State Solids,1981,(02):569-572.
  • 8Hanuza J,Maczka M,vander Mass J H. Vibrational properties of double tungstates of the M Ⅰ MⅢ (WO4) 2 family (M Ⅰ =Li,Na,K;MⅢ =Bi,Cr)[J].Journal of Solid State Chemistry,1995,(01):177-188.
  • 9Zhou Xiuwen,Liu Tingyu,Zhang Qiren. First-principles study of cadmium vacancy in CdWO4 crystal[J].Solid State Sciences,2009,(12):2071-2074.
  • 10陈红兵,肖华平,徐方,方奇术,蒋成勇,杨培志.坩埚下降法生长钨酸镉单晶的光学均匀性[J].无机材料学报,2009,24(5):1036-1040. 被引量:5

共引文献2

同被引文献41

  • 1李强,高濂,严东生.YAG:Ce^(3+)微粉的制备及光谱性能[J].无机材料学报,1997,12(4):575-578. 被引量:28
  • 2Mu J S, Zhang L, Zhao M, et al. ACS Appl. Mater. Interfaces, 2014,6:7090-7098.
  • 3Hu J S, Zhong L S, Song W G, et al. J. Adv. Mater., 2008, 20:2977-2982.
  • 4Li C C, Yin X M, Wang T H, et al. Chem. Mater., 2009,21:4984-4992.
  • 5Chen A M, Li J, Gu P, et al. Powder Technol., 2014,267:54-60.
  • 6Yin S Y, Zhang Y Y, Kong J H. ACS Nano, 2011,5:3831-3838.
  • 7Kim P, Kreder M J, Alvarenga J, et al. Nano Lett., 2013,13:1793-1799.
  • 8Wei X W, Zhou X M, Wu K L, et al. CrystEngComm, 2011, 13:1328-1332.
  • 9Sarkar S, Pradhan M, Sinha A K, et al. Inorg. Chem., 2010, 49(19):8813-8827.
  • 10Singh B P, Parchur A K, Ningthoujam R S, et al. Dalton Trans., 2014,43:4779-4789.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部