期刊文献+

贝叶斯神经网络在蒸气管网预测中的应用 被引量:4

Application of Bayesian Neural Networks in Steam Pipe Network Prediction
原文传递
导出
摘要 蒸气管网是具有典型大时滞特点的非线性网络系统结构,提高管网运行预测能力,对管网的安全高效运行有很好的指导意义。贝叶斯神经网络具有良好的泛化能力和准确计算能力,在网络目标函数中引入表示网络结构复杂性的惩罚项,以便能够在训练优化过程中降低网络结构的复杂性,达到避免网络过拟合的目的。实例验证表明,模型计算结果和泛化能力均有良好表现,优于传统BP算法计算性能,可提高企业蒸气管网运行管理水平,对流程工业节能减排建设有一定的帮助。 Steam pipe network is typical non-linear network structure.It is instructive to increase predictive capacity to steam pipe network highly effective.Bayesian neural networks is well generalization and better calculate capabili-ty.A penalty term which could be interpreted as an indication of the complexity of the network was introduced into the obj ective function to present the occurrence of “overfitting”.Compared with the conventional BP neural net-work,it has the advantages of faster convergence rate,higher stability and ability for generalization.The result had certain guided signification to accelerate the construction of hybrid process energy-saving and emission-reduction.
作者 马湧 孙彦广
出处 《中国冶金》 CAS 2014年第6期53-57,共5页 China Metallurgy
基金 国家高技术研究发展计划(863计划)专项基金资助项目(2012AA050215)
关键词 蒸气管网 贝叶斯神经网络 数据归一化 预测建模 steam pipe network Bayesian neural networks data normalization predictive modeling
  • 相关文献

参考文献9

二级参考文献58

共引文献63

同被引文献40

  • 1管亮,冯新泸.基于小波变换的信号消噪效果影响因素研究及其Matlab实践[J].自动化与仪器仪表,2004(6):43-46. 被引量:11
  • 2赵晖,刘伟.关于涡街流量计在蒸汽测量中的讨论[J].化工自动化及仪表,2005,32(6):68-69. 被引量:4
  • 3徐建伟,刘桂芬.基于贝叶斯正规化算法的BP神经网络泛化能力研究[J].数理医药学杂志,2007,20(3):293-295. 被引量:10
  • 4张立宏,蔡九菊.钢铁企业蒸汽利用方式的研究[J].工业加热,2007,36(5):1-3. 被引量:9
  • 5Roziana Ramli, Hamzah Arof, Fatimah Ibrahim and etc. Using fi nile state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigation [J]. Expert Systems with Applications, 2015, 42:2451-2463.
  • 6Simpson R C. Smart wheelchair: a literature review [J]. Journal of Rehabilitation Research & Development, 2005, 42 (4): 423-436.
  • 7Bourhis G, Horn O, Habert O, et al. An autonomous vehicle for people with motor disabilities [J]. IEEE Robotics and Automation Magazine, 2001, 8 (1): 20-28.
  • 8Parikh S P. Grassi V, Kumar V and etc. Integrating human inputs with autonomous behaviors on an intelligent wheelchair platform [J]. IEEEIntelligent System, 2007, 22 (2): 33-41.
  • 9Meng Wang, James N K. Liu. Fuzzy Iogic-based real-time robot navigation in unknown environment with dead ends [J]. Robotics and Autonomous Systems, 2008, 56:625-643.
  • 10Mohanty, Prases K, Parhi, Dayal R. Navigation of autonomous mobile robot using adaptive network based fuzzy inference system [J]. Journal of Mechanical Science and Technology, 2014, 28: 2861 - 2868.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部