期刊文献+

一种基于可变Snake模型的肝脏超声病灶图像分割方法 被引量:1

LIVER FOCUS ULTRA SOUND IMAGE SEGMENTATION METHOD BASED ON ACTIVE SNAKE MODEL
在线阅读 下载PDF
导出
摘要 Snake模型(活动轮廓模型)大量应用于各种医学图像的分割,用于对超声图像病灶的分割和识别,可以大大提高临床诊断和决策的效率。针对NBGVF模型对弱边界处理效果差,分割运算量大,对初始轮廓不能自适应生成等不足,提出一种基于能量函数和颜色特征的初始轮廓提取方法,结合病灶区域颜色空间特征和医生先验信息,利用能量函数构建可变的Snake初始轮廓完成逼近,对图像中病灶位置进行有效的提取。实验结果表明,改进的方法提高了病灶分割和临床决策效率。 Recently, we focus more about special medical image segmentation and detection. The segmentation on Ultrasound image focus plays an important role in deciding. Snake model is widely used in the medical image segmentation. The model has been constantly improved and developed. We describe the Snake model on color liver ultrasoune image. Furthermore, the method is proposed that we use energy function and color information to detect the initial edge with the help of space detail and experience of doctor. Finally, the modified GVF Model is also used. The result shows that the algorithm is effective and simple.
作者 黄伟 卢桂馥
出处 《井冈山大学学报(自然科学版)》 2014年第4期48-52,共5页 Journal of Jinggangshan University (Natural Science)
关键词 SNAKE模型 超声图像 分割 Snake model ultrasound image segmentation
  • 相关文献

参考文献8

  • 1Heath M,Sarkar S,Sanocki T,et al.Comparison of edge detectors:a methodology and initial study[C]//Computer Vision and Pattern Recognition,1996.Proceedings CVPR'96,1996 IEEE Computer Society Conference on.IEEE,1996:143-148.
  • 2Pei S C,Cheng C M.Color image processing by using binary quaternion-moment-preserving thresholding technique[J].Image Processing,IEEE Transactions on,1999,8(5):614-628.
  • 3Xu C,Prince J L.Snakes,shapes,and gradient vector flow[J].Image Processing,IEEE Transactions on,1998,7(3):359-369.
  • 4Jifeng N,Chengke W,Shigang L,et al.NGVF:An improved external force field for active contour model[J].Pattern Recognition Letters,2007,28(1):58-63.
  • 5王宇,刘磊.带法向有偏梯度矢量流的活动轮廓模型图像分割方法[J].IEEE信号处理,2010,17(10):875-878.
  • 6Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].International journal of computer vision,1988,1(4):321-331.
  • 7王斌,李洁,高新波.一种基于边缘与区域信息的先验水平集图像分割方法[J].计算机学报,2012,35(5):1067-1072. 被引量:44
  • 8王元全,贾云得.一种新的心脏核磁共振图像分割方法[J].计算机学报,2007,30(1):129-136. 被引量:23

二级参考文献53

  • 1屈颖歌,周涛,王平安,夏德深.基于支持向量机的核磁共振左心室图像自动检测与分割[J].武汉大学学报(理学版),2003,49(6):769-774. 被引量:5
  • 2周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报,2005,17(1):129-133. 被引量:12
  • 3陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报,2005,28(6):991-999. 被引量:9
  • 4Zhang Y. Advances in Image and Video Segmentation. Her- shey, PA; IRM Press, 2006.
  • 5Osher S, Sethian J A. Fronts propagating with curvature- dependent speed: Algorithms based on Hamilton-Jacobi for- mulation. Journal of Computational Physics, 1988, 79 (1) : 12-49.
  • 6Osher S, Fedkiw R. Level Set Methods and Dynamics Im- plicit Surfaces. New York: Springer, 2003.
  • 7Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988: 1(4): 321-331.
  • 8Xu C, Prince J L. Snake, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 1998, 7 (3): 359- 369.
  • 9Suri J S, Liu K, Singh S, Laxminarayan S N, Zeng X, Re- den L. Shape recovery algorithms using level sets in 2D/3D medical imagery.. A state-of-the-art review. IEEE Transac- tions on Information Technology in Biomedicine, 2002, 6(1) : 8-28.
  • 10Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.

共引文献65

同被引文献11

  • 1王元全,贾云得.一种新的心脏核磁共振图像分割方法[J].计算机学报,2007,30(1):129-136. 被引量:23
  • 2章毓晋.图像工程(上册)[M].北京:清华大学出版社,2002.
  • 3Heath M,Sarkar S,Sanocki T,et al.Comparison of edge detectors:a methodology and initial study[J].Computer vision and image understanding,1998,69(1):38-54.
  • 4夏利民,谷坟.基于自适活动轮廓的图像分割[J].长沙铁道学院学报,2001,22(2):2-4.
  • 5Cover T M,Hart P E.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.
  • 6Villegas M,Paredes R.Dimensionality reduction by minimizing nearest-neighbor classification error[J].Pattern Recognition Letters,2011,32(4):633-639.
  • 7Naseem I,Togneri R,Bennamoun M.Linear regression for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(11):2106-2112.
  • 8Li S Z,Lu J.Face recognition using the nearest feature line method[J].IEEE Transactions on Neural Networks,1999,10(2):439-443.
  • 9Chien J T,Wu C C.Discriminant waveletfaces and nearest feature classifiers for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(12):1644-1649.
  • 10Zheng W,Zhao L,Zou C.Locally nearest neighbor classifiers for pattern classification[J].Pattern Recognition,2004,37(6):1307-1309.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部