期刊文献+

一种改进的PSO-MBCV算法的车底阴影分割

Segmentation of bottom shadow of vehicle based on improved PSO-MBCV algorithm
在线阅读 下载PDF
导出
摘要 针对当前车底阴影分割算法在复杂环境下鲁棒性较差以及最大类间方差(maximum between-class variance,MBCV)多阈值分割算法不能自动确定阈值个数的问题,提出利用峰值自适应方法自动确定MBCV多阈值分割算法中阈值个数;然后,以阈值的个数为粒子群优化算法(particle swarm optimization,PSO)中粒子的维数,提出了一种改进的PSO-MBCV算法的车底阴影分割。实验结果表明,该算法能有较低的误分类误差,能有效地分割出车底阴影。 The current segmentation algorithms of bottom shadow of vehicle have poor robustness,meanwhile,the multilevel thresholds segmentation algorithm of maximum between-class variance(MBCV)method does not determine automatically the number of the thresholds.Therefore,firstly,the peak adaptive method based on image histogram is used to determine the number of thresholds;then,the number is considered as the particle dimension of the particle swarm optimization(PSO)algorithm,and the bottom shadow of vehicles based on an improved PSO-MBCV algorithm is proposed.The results show that the misclassification error(ME)can be deduced and the bottom shadow of vehicles can be effectively segmented.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第7期1439-1445,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(91120003) 国家自然科学青年基金(61105092) 北京市自然科学基金(6101001)资助课题
关键词 最大类间方差 峰值自适应方法 粒子群优化算法 误分类误差 maximum between-class variance(MBCV) peak adaptive method particle swarm optimization(PSO)algorithm misclassification error(ME)
  • 相关文献

参考文献14

二级参考文献62

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部