期刊文献+

Optimizing bio-physical conditions and pre-treatment options for breaking lignin barrier of maize stover feed using white rot fungi 被引量:3

Optimizing bio-physical conditions and pre-treatment options for breaking lignin barrier of maize stover feed using white rot fungi
原文传递
导出
摘要 The greatest limitation to utilization of maize stover by ruminants as a feed is the high concentration of lignin, which limits fibre digestibility. However, ruminants can effectively utilize maize stover if its nutritive value is improved using white rot fungal species. This study was designed to determine optimal biophysical conditions for mycelial growth and select the most ideal fungal species and pre-treatment options for improving nutritive value of maize stover. Four popular edible Pleurotus fungal species(viz.Pleurotus florida,Pleurotus ostreatus, Pleurotus sajor caju and Pleurotus pulmonarius) were subjected to varying temperatures, pH levels, hydrogen peroxide(H_2 O_2) concentration and illumination to establish the extent of mycelial growth rate.Inclusion of H_2 O_2 was used to determine optimal levels for preservation and prevention of contamination from other indigenous microbiota. Effects of pre-treatment options on chemical composition and nutritive value of maize stover were also examined. Mycelial growth rate of Pleurotus species on potato dextrose agar(PDA) varied(P < 0.05) with temperature, pH level and H_2 O_2 concentration following a quadratic trend. Optimal temperature, pH and H_2 O_2 concentration for mycelial growth on PDA were 25 ℃,5 and 0.01 mL/L, respectively. Under the different bio-physical conditions,P. sajor caju had the highest mycelia density and growth rate. Chemical composition of solid-state fermented maize stover differed(P < 0.05) among the Pleurotus species. Maize stover fermented with P. sajor caju had the highest crude protein(CP) of 86.6 g/kg DM, in-vitro dry matter digestibility(IVDMD) of 731 g/kg DM, in-vitro organic matter digestibility(IVOMD) of 670.4 g/kg DM and metabolizable energy(ME) of10.0 MJ/kg DM but with the lowest lignin(sa) of 50 g/kg DM. At 25℃, P. sajor caju had the highest mycelial growth rate on PDA and highest lignin(sa) breakdown in the maize stover substrate. It was, therefore,selected as the most ideal fungal species for improving nutritive value of maize stover. Pre-treatment of maize stover with Lactobacillus plantarum and molasses under anaerobic condition for 7 days before inoculation with P. sajor caju resulted into a substrate with the highest(P< 0.05) CP(96.6 g/kg DM), IVDMD(752.3 g/kg DM), IVOMD(687.2 g/kg DM) and ME(10.2 MJ/kg DM). However, neutral detergent fiber exclusive of residual ash(NDFom) and lignin(sa) fractions decreased(P < 0.05) as a result of subjecting maize stover to pre-treatment with L. plantarum and molasses prior to fermentation with P. sajor caju.Therefore, pre-treatment of maize stover with L. plantarum and molasses for 7 days prior to fermentation with P. sajorcaju for 14 days in darkness at 25℃ offered the greatest potential for breaking the lignin barrier. The greatest limitation to utilization of maize stover by ruminants as a feed is the high concentration of lignin, which limits fibre digestibility. However, ruminants can effectively utilize maize stover if its nutritive value is improved using white rot fungal species. This study was designed to determine optimal biophysical conditions for mycelial growth and select the most ideal fungal species and pre-treatment options for improving nutritive value of maize stover. Four popular edible Pleurotus fungal species(viz.Pleurotus florida,Pleurotus ostreatus, Pleurotus sajor caju and Pleurotus pulmonarius) were subjected to varying temperatures, pH levels, hydrogen peroxide(H_2 O_2) concentration and illumination to establish the extent of mycelial growth rate.Inclusion of H_2 O_2 was used to determine optimal levels for preservation and prevention of contamination from other indigenous microbiota. Effects of pre-treatment options on chemical composition and nutritive value of maize stover were also examined. Mycelial growth rate of Pleurotus species on potato dextrose agar(PDA) varied(P < 0.05) with temperature, pH level and H_2 O_2 concentration following a quadratic trend. Optimal temperature, pH and H_2 O_2 concentration for mycelial growth on PDA were 25 ℃,5 and 0.01 mL/L, respectively. Under the different bio-physical conditions,P. sajor caju had the highest mycelia density and growth rate. Chemical composition of solid-state fermented maize stover differed(P < 0.05) among the Pleurotus species. Maize stover fermented with P. sajor caju had the highest crude protein(CP) of 86.6 g/kg DM, in-vitro dry matter digestibility(IVDMD) of 731 g/kg DM, in-vitro organic matter digestibility(IVOMD) of 670.4 g/kg DM and metabolizable energy(ME) of10.0 MJ/kg DM but with the lowest lignin(sa) of 50 g/kg DM. At 25℃, P. sajor caju had the highest mycelial growth rate on PDA and highest lignin(sa) breakdown in the maize stover substrate. It was, therefore,selected as the most ideal fungal species for improving nutritive value of maize stover. Pre-treatment of maize stover with Lactobacillus plantarum and molasses under anaerobic condition for 7 days before inoculation with P. sajor caju resulted into a substrate with the highest(P< 0.05) CP(96.6 g/kg DM), IVDMD(752.3 g/kg DM), IVOMD(687.2 g/kg DM) and ME(10.2 MJ/kg DM). However, neutral detergent fiber exclusive of residual ash(NDFom) and lignin(sa) fractions decreased(P < 0.05) as a result of subjecting maize stover to pre-treatment with L. plantarum and molasses prior to fermentation with P. sajor caju.Therefore, pre-treatment of maize stover with L. plantarum and molasses for 7 days prior to fermentation with P. sajorcaju for 14 days in darkness at 25℃ offered the greatest potential for breaking the lignin barrier.
出处 《Animal Nutrition》 SCIE 2016年第4期361-369,共9页 动物营养(英文版)
基金 East African Agricultural Productivity Project (EAAP) National Agricultural Research Organization (NARO) the National Livestock Resources Research Institute(NaLIRRI) for the financial support during the progress of this work
关键词 Crop residues Lactobacillus plantarum Lignin biodegradation Mycelial growth Crop residues Lactobacillus plantarum Lignin biodegradation Mycelial growth
  • 相关文献

同被引文献41

引证文献3

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部