期刊文献+

多维度属性加权分析的微博用户聚类研究 被引量:13

Research on the Clustering of Microblog Users Based on Multi-dimensional Attribute Weighting Analysis
原文传递
导出
摘要 [目的/意义]准确把握社交网络用户兴趣倾向,对用户进行分类并形成高聚合的用户群,对研究社交网络信息生态以及信息推荐有重大意义。[方法/过程]通过构造基于多维度的用户属性描述层次模型,根据模型数据需求从新浪微博抓取用户样本数据,对相关用户背景信息、用户博文信息以及用户行为信息的多维度属性下二阶变量进行量化,构造用户向量表达式,比较单一维度与多维度下的用户分类效果,进一步给属性赋予不同的权重值进行加权分析,在取得最优聚类效果后进行方差分析,对模型进行改进。[结果/结论]基于多维度属性加权后的用户聚类效果明显高于单一维度及多维度非加权条件下的用户聚类,且用户博文内容维度对于提高用户聚类效果的有效性最大。 [Purpose/significance] It is of great significance for the study of social network information ecology and information recommendation to accurately grasp the interest tendency of social network users and classify users into highly aggregated user groups.[Method/process]In this paper,by constructing the user attributes describe hierarchical model based on multi-dimensional,according to the model data requirements fetching user sample data from Sina microblog, quantify the seeondorder variable based on the multi-dimensional property of the users'background information,users blog information and user behavior information to construct user vector expression,comparing the classification results based on single dimension and the multi-dimensional,given different weights to attribute for weighted analysis,when achieve the optimal clustering results,based it do variance analysis to improve the model.[Result/conclusion]User clustering effect based on the multi-dimensional attribute weighting is significantly better than the user clustering effect based on the single-dimensional and under the condition of the multidimensional unweighted,and users microblog content dimension for improving the validity of user clustering effect is the largest.
作者 张海涛 唐诗曼 魏明珠 李泽中 Zhang Haitao;Tang Shiman;Wei Mingzhu;Li Zezhong(The Management College of Jilin University,Changchun 130022;The Information Resource Research Center of Jilin University,Changchun 130022)
出处 《图书情报工作》 CSSCI 北大核心 2018年第24期124-133,共10页 Library and Information Service
关键词 微博 多维度 用户聚类 加权分析 microblogs multi-dimensional user-cluster weighted-analysis
  • 相关文献

参考文献7

二级参考文献112

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2裴雷,马费成.社会网络分析在情报学中的应用和发展[J].图书馆论坛,2006,26(6):40-45. 被引量:70
  • 3Li Deyi. Soft inference mechanism based on cloud models[Z]. The Joint Int Conf and Symposium on Logic Programming, Martin,Germany,1996.
  • 4Li Deyi, Di Kaichang, Li Deren, et al. Mining association rules with linguistic cloud models[Z]. PAKDD'98 The Second Pacific-Asia Conf on Knowledge Discovery & Data Mining, Melbourne,Australia, 1998.
  • 5TAN P N,STEINBACH M,KUMAR V.数据挖掘导论[M].范明,范宏建,等译.北京:人民邮电出版社,2006.
  • 6Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches/ /Proceedings of the 4th ACM Conference on Recommender Systems (Rec'Sys ' 2010). New York, USA, 2010: 99-206.
  • 7Tang Jie, Sun Jimeng, Wang Chi, Yang Zi. Social influence analysis in large-scale networks/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 807-816.
  • 8Wu S, Hofman J M, Mason W A, Watts DJ. Who says what to whom on twitter/ /Proceedings of the 20th International Conference on World Wide Web (WWW?Il). Hyderabad , 2011: 705-714.
  • 9Jeon H, Kim T, Choi J. Adaptive user profiling for personalized information retrieval! /Proceedings of the 2008 International Conference on Convergence and Hybrid Information Technology. Busan , 2008: 836-841.
  • 10Xiang Rongjing, Neville J, Rogati M. Modeling relationship strength in online social networks/ /Proceedings of the WWW2010. Raleigh, North Carolina, USA, 2010: 981-990.

共引文献151

同被引文献191

引证文献13

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部