摘要
[目的/意义]准确把握社交网络用户兴趣倾向,对用户进行分类并形成高聚合的用户群,对研究社交网络信息生态以及信息推荐有重大意义。[方法/过程]通过构造基于多维度的用户属性描述层次模型,根据模型数据需求从新浪微博抓取用户样本数据,对相关用户背景信息、用户博文信息以及用户行为信息的多维度属性下二阶变量进行量化,构造用户向量表达式,比较单一维度与多维度下的用户分类效果,进一步给属性赋予不同的权重值进行加权分析,在取得最优聚类效果后进行方差分析,对模型进行改进。[结果/结论]基于多维度属性加权后的用户聚类效果明显高于单一维度及多维度非加权条件下的用户聚类,且用户博文内容维度对于提高用户聚类效果的有效性最大。
[Purpose/significance] It is of great significance for the study of social network information ecology and information recommendation to accurately grasp the interest tendency of social network users and classify users into highly aggregated user groups.[Method/process]In this paper,by constructing the user attributes describe hierarchical model based on multi-dimensional,according to the model data requirements fetching user sample data from Sina microblog, quantify the seeondorder variable based on the multi-dimensional property of the users'background information,users blog information and user behavior information to construct user vector expression,comparing the classification results based on single dimension and the multi-dimensional,given different weights to attribute for weighted analysis,when achieve the optimal clustering results,based it do variance analysis to improve the model.[Result/conclusion]User clustering effect based on the multi-dimensional attribute weighting is significantly better than the user clustering effect based on the single-dimensional and under the condition of the multidimensional unweighted,and users microblog content dimension for improving the validity of user clustering effect is the largest.
作者
张海涛
唐诗曼
魏明珠
李泽中
Zhang Haitao;Tang Shiman;Wei Mingzhu;Li Zezhong(The Management College of Jilin University,Changchun 130022;The Information Resource Research Center of Jilin University,Changchun 130022)
出处
《图书情报工作》
CSSCI
北大核心
2018年第24期124-133,共10页
Library and Information Service
关键词
微博
多维度
用户聚类
加权分析
microblogs
multi-dimensional
user-cluster
weighted-analysis