摘要
设D是一个本原有向图且u∈V(D) ,D在u点的指数 ,记作expD(u) ,定义为这样的一个最小正整数k ,它使得对任意v∈V(D) ,D中均有u到v的长为k的有向通道 .设V(D) ={ 1,2 ,… ,n}使得expD(1)≤expD(2 )≤…≤expD(n) .本文研究了奇围长为 5的n阶本原对称有向图 。
Let D be a primitive digraph and u∈V(D) .The exponent at u of D ,denoted by exp D(u) ,is defined to be the least positive integer k such that for any v∈V(D) ,there is a directed walk of length k from u to v .Let V(D)={1,2,...,n} so that exp D(1) ≤exp D (2)≤...≤exp D(n) .exp D(k) is called the k th local exponent of D .In this paper,we consider the symmetric primitive digraphs of order n with odd girth 5 and obtain the local exponent sets of them.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
2001年第4期24-27,32,共5页
Journal of Nanjing Normal University(Natural Science Edition)