摘要
借助位势理论,平面双调和方程的Dirichlet问题被转化为第一类边界积分方程组.本文使用新型的反常积分的求积公式构造出解此类边界积分方程的机械求积方法,证明了该方法具有O(h3)阶精度和误差的h3幂渐近展开,故借助Richardson外推还能提高精度阶.
By means of potential theory, the biharmonic Dirichlet problem can be trans- fered to a boundary inteqral equation system of the first kind. This paper presents a quadra- ture method for solving boundary integral equation system of biharmonic Dirichlet problem, which possesses accuracy 0(h3). Moreover, the asymptotic expansion with h3 power of the error is shown, so we can improve the accuracy order of the approximations by Richardson extrapolation.
出处
《应用数学学报》
CSCD
北大核心
2001年第3期321-332,共12页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金资助项目.