期刊文献+

有液层负载时各向异性薄板中Lamb波的传播 被引量:3

The propagation of Lamb waves in an anisotropic plate bordered with liquid layers
原文传递
导出
摘要 研究各向异性板有液层负载时板中Lamb波的传播.以微传感领域常用的ZnO等为例,从弹性波传播理论出发,结合边界条件,导得了各向异性薄板有液层负载时板中Lamb波传播的色散方程,这也同样适用于正交晶体系,正方晶体系和立方晶体系的晶体.数值计算结果表明,各向异性板中Lamb波相速度随液层厚度增加呈周期变化.当单面有液层负载的薄板厚度2d很小时,A0模式的类Lamb波的微质量传感特性也作了讨论. Based on elastic wave propagation theory, a dispersion equation for thin anisotropic plate (such as commonly used ZnO) bordered with liquid layers is derived. Higher symmetry crystals, such as orthorhombic, tetragonal, cubic, isotropic , are contained implicitly in this analysis. For the case of one liquid layer loading, numerical calculations show that the phase velocity changes periodically with the thickness of liquid layer. When the thickness of the anisotropic plate 2d is very small, mass sensing application of A0 mode Lamb wave is also discussed.
出处 《声学学报》 EI CSCD 北大核心 2001年第5期429-434,共6页 Acta Acustica
基金 国家自然科学基金资助项目
  • 相关文献

参考文献3

二级参考文献7

  • 1朱哲民,李剑,邹薇.有液层负载时薄板中类Lamb波的传播[J].声学学报,1996,21(2):174-181. 被引量:17
  • 2Wu Junru,J Acoust Soc Am,1992年,91卷,2期,861页
  • 3Liu Yuan,J Acoust Soc Am,1996年,99卷,2期,706页
  • 4Wu Junru,J Acoust Soc Am,1995年,97卷,5期,3191页
  • 5Zhu Zhemin,J Acoust Soc Am,1995年,98卷,2期,1507页
  • 6Zhu Zhemin,Sensors Actuators A,1995年,49卷,79页
  • 7Wu Junru,J Acoust Soc Am,1992年,91卷,2期,861页

共引文献21

同被引文献30

  • 1沈中华,许伯强,倪晓武,陆建.单层和双层材料中的脉冲激光超声数值模拟[J].中国激光,2004,31(10):1275-1280. 被引量:25
  • 2宁伟,王耀俊.三层复合结构中的漏Lamb波:理论与实验[J].声学学报,1996,21(5):767-772. 被引量:7
  • 3Xu B, Feng J, Xu C et al. Laser-generated thermoelas- tic acoustic sources and Lamb waves in anisotropic plates. Appl. Phys. A-Mater., 2008: 91(1): 173-179.
  • 4Brischetto S, Carrera E. Coupled thermo-mechanical anal- ysis of one-layered and multilayered plates. Compos. Stvuct., 2010: 92(8): 1793-1812.
  • 5Thomson W T. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys., 1950: 21(2): 89- 93.
  • 6Knopoff L. A matrix method for elastic wave problems. B. Seismol. Soc. Am., 1964: 54(1): 431-438.
  • 7Dunkin J W. Computation of modal solutions in layerec elastic media at high frequencies. B. Seismol. Soc. Am. 1965: 55(2): 335-358.
  • 8Lowe M J S. Matrix techniques for modeling ultrasonic waves in multilayered media. Ultrasonics, 1995: 42(4): 525-542.
  • 9Aalami B. Waves in prismatic guides of arbitrary cross sec- tion. J. Appl. Mech., 1973: 40:1067-1072.
  • 10Lagasse P. Higher-order finite element analysis of topo- graphic guides supporting elastic surface waves, J. Acoust. Soc. Am., 1973: 53:1116-1122.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部