摘要
通过引入 1组新的插值样条基函数 :B0 (t) =-λt+ 3λt2 - 3λt3+λt4 ,B1(t) =1+ (2λ - 1)t- 3t2 + 5 (1-λ)t3+ (3λ - 2 )t4 ,B2 (t) =(1-λ)t+ 3(1-λ)t2 + (7λ - 4)t3+ (1- 3λ)t4 ,B3(t) =(λ - 1)t3+ (1-λ)t4 ,构造了 4次插值样条函数 ,讨论了可调参数对曲线段端点切矢的影响和曲线的拐点性质 .结果表明 :这些曲线是整体C2 连续的 ,是局部可修改和可调的 .
A group of new basic functions is given, i.e., B 0(t)=-λt+3λt 2-3λt 3+λt 4,B 1(t)=1+(2λ-1)t-3t 2+5(1-λ)t 3+(3λ-2)t 4,B 2(t)=(1-λ)t+3(1-λ)t 2+(7λ-4)t 3+(1-3λ)t 4,B 3(t)=(λ-1)t 3+ (1-λ)t 4 . An interpolation spline curve by using these basic functions is defined. Some effects of the variable parameter on the spline curvature and end point tangent are also discussed. The results show that the interpolation spline curve is C 2 continuous, local modification and can be adjusted.
出处
《中南工业大学学报》
CSCD
北大核心
2001年第3期328-330,共3页
Journal of Central South University of Technology(Natural Science)