摘要
本文介绍了求解哑铃式分子模型位形空间分布函数扩散方程的数值方法,以及用这种方法计算的若干分子模型的流变性质。在通常情况下,将这一方法与求解流动守恒方程的边界元法相结合,便有可能用一个得不到本构方程的分子模型去代替连续介质力学本构方程,来模拟聚合物流体的复杂流动。本文还讨论了这一方法某些令人感兴趣的特点。
A numerical method to solve the diffusion equation in configuration space for the distribution function of dumbbell models is described and the rheo-logical propcrli.cs of several models are calctilaled by using the method. This method is combined with the boundary clement method for solving the conservation equations in fluid dynamics in general cases. It is possible to use a molecular model which has no relevant constitutive equation to lake the place of the constitutive equation in continuum mechanics for numerical simulation of complex-flows of polymer liquids. The interesting features of the method arc discussed.
出处
《力学进展》
EI
CSCD
北大核心
1990年第1期11-23,共13页
Advances in Mechanics
关键词
哑铃式聚合物分子模型
流变学
数值方法
分布函数
物质函数
dumbbell model
distribution junction
material function
Galerkin method
boundary element method
steady planar flow