期刊文献+

Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth 被引量:15

Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth
在线阅读 下载PDF
导出
摘要 Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damage induced by amyloid beta(25–35) in cultured hippocampal neurons, and explore the underlying mechanisms. Ginsenoside Rb1 significantly increased neurite outgrowth in hippocampal neurons, and increased the expression of phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2. These effects were abrogated by API-2 and PD98059, inhibitors of the signaling proteins Akt and MEK. Additionally, cultured hippocampal neurons were exposed to amyloid beta(25–35) for 30 minutes; ginsenoside Rb1 prevented apoptosis induced by amyloid beta(25–35), and this effect was blocked by API-2 and PD98059. Furthermore, ginsenoside Rb1 significantly reversed the reduction in phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2 levels induced by amyloid beta(25–35), and API-2 neutralized the effect of ginsenoside Rb1. The present results indicate that ginsenoside Rb1 enhances neurite outgrowth and protects against neurotoxicity induced by amyloid beta(25–35) via a mechanism involving Akt and extracellular signal-regulated kinase 1/2 signaling. Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damage induced by amyloid beta(25–35) in cultured hippocampal neurons, and explore the underlying mechanisms. Ginsenoside Rb1 significantly increased neurite outgrowth in hippocampal neurons, and increased the expression of phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2. These effects were abrogated by API-2 and PD98059, inhibitors of the signaling proteins Akt and MEK. Additionally, cultured hippocampal neurons were exposed to amyloid beta(25–35) for 30 minutes; ginsenoside Rb1 prevented apoptosis induced by amyloid beta(25–35), and this effect was blocked by API-2 and PD98059. Furthermore, ginsenoside Rb1 significantly reversed the reduction in phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2 levels induced by amyloid beta(25–35), and API-2 neutralized the effect of ginsenoside Rb1. The present results indicate that ginsenoside Rb1 enhances neurite outgrowth and protects against neurotoxicity induced by amyloid beta(25–35) via a mechanism involving Akt and extracellular signal-regulated kinase 1/2 signaling.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期943-950,共8页 中国神经再生研究(英文版)
基金 supported by grants from the National Natural Science Foundation of China,No.30971531,81070987
关键词 nerve regeneration ginsenoside Rb1 hippocampal neurons neurite outgrowth apoptosis amyloid beta protein(25–35) growth-associated protein-43 Hoechst-33258 staining PD98059 API-2 Akt and ERK1/2 signaling NSFC grant neural regeneration nerve regeneration ginsenoside Rb1 hippocampal neurons neurite outgrowth apoptosis amyloid beta protein(25–35) growth-associated protein-43 Hoechst-33258 staining PD98059 API-2 Akt and ERK1/2 signaling NSFC grant neural regeneration
  • 相关文献

参考文献4

二级参考文献58

共引文献236

同被引文献174

引证文献15

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部