期刊文献+

深度学习研究进展 被引量:296

Research and development on deep learning
在线阅读 下载PDF
导出
摘要 鉴于深度学习的重要性,综述了深度学习的研究进展。首先概述了深度学习具有的优点,由此说明了引入深度学习的必要性;然后描述了三种典型的深度学习模型,包括卷积神经网络模型、深度信任网络模型和堆栈自编码网络模型,并对近几年深度学习在初始化方法、网络层数和激活函数的选择、模型结构、学习算法和实际应用这四个方面的研究新进展进行了综述;最后探讨了深度学习在理论分析、数据表示与模型、特征提取、训练与优化求解和研究拓展这五个方面中有待进一步研究解决的问题。 In view of the significance of deep learning,this paper reviewed the research and development on deep learning.Firstly,this paper summarized the advantage of deep learning,and illustrated the necessity of introducing deep learning. Secondly,it described three kinds of typical deep learning models,included convolutional neural network model,deep belief network model,and stacked auto-encoder network model. Thirdly,it reviewed new research and development on deep learning in recent years,included the choice of initialization methods,the number of network layers,and activation function,model structure,learning algorithms,and practical application. Finally,it presented the problems to be solved in aspects of theoretical analysis,representation and model of data,feature extraction,training and optimization,and research extension.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期1921-1930,1942,共11页 Application Research of Computers
基金 国家"973"计划资助项目(2012CB720500) 国家自然科学基金资助项目(21006127) 中国石油大学(北京)基础学科研究基金资助项目(JCXK-2011-07)
关键词 深度学习 神经网络 模型 表示 堆栈 预训练 deep learning neural network model representation stacking pre-training
  • 相关文献

参考文献102

  • 1HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 2BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 3VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 4LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 5TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 6SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 7TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 8JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.
  • 10LEE H, PHAM P, LARGMAN Y, et at. Unsupervised feature learn- ing for audio classification using convolutional deep belief networks [C ]//Advances in Neural Information Processing Systems. Cam- bridge : MIT Press ,2009 : 1096-1104.

同被引文献2337

引证文献296

二级引证文献2894

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部