期刊文献+

近似稀疏正则化的红外图像超分辨率重建 被引量:22

Super-resolution reconstruction of approximate sparsity regularized infrared images
在线阅读 下载PDF
导出
摘要 针对红外图像分辨率低、受噪声影响严重等问题,引入近似稀疏正则化和K-奇异值分解(K-SVD)法,提出了基于近似稀疏表示模型的红外图像超分辨率重建方法。考虑到红外图像受到噪声污染,首先建立了稳健近似稀疏表示模型。针对已有字典训练方法时间消耗巨大问题,在假定低分辨率图像空间和高分辨率图像空间具有相似流形的前提下,联合近似稀疏表示模型和K-SVD方法,提出近似稀疏约束的基于K-SVD的高低分辨率字典对学习算法。最后,通过高分辨字典和对应的红外图像群稀疏表示系数重建得到高分辨率的红外图像。为了验证算法的性能,对提出的算法与稀疏性正则化的图像超分辨模型(SRSR)和Zeyde算法进行了实验比较。结果表明,本文方法能够较好地减少红外图像中的噪声,同时获得更好的超分辨率重建效果。 Abstract: For the problems of tow-resolution and serious effect from noises of infrared images, an approximate sparsity regularized infrared image super-resolution reconstruction algorithm (ASSR) based on K-SVD (Singular Value Decomposition) was proposed. In consideration of the noise effect from infrared images, an approximate sparsity representation model was first established. On the assumption that the low and high resolution image spaces hold a similar manifold, an approximate sparsity regularized K-SVD based dictionary learning method was proposed with approximate sparsity model and K-SVD method to solve the time-consu-ming problem of existing dictionary training process. Finally, the high-resolution infrared images were recovered by the high-resolution dictionary and the corresponding low-resolution group sparse coefficients. To veri fy the performance of the algorithm proposed, it was compared with those of the Sparsity Regularized Super Resolution Reconstruction (SRSR) and Zeyde algorithm. Experimental results show that the proposed meth- od can reduce the noises of infrared images, and can obtain excellent performance in super-resolution recon struction.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第6期1648-1654,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61162022 61362036) 江西省自然科学基金资助项目(No.20132BAB201021) 江西省科技落地计划资助项目(No.KJLD12098) 江西省教育厅资助项目(No.GJJ12632 GJJ13762) 江西省大学生创新创业资助项目(No.201211319001)
关键词 红外图像 超分辨率重建 近似稀疏 字典学习 infrared image super-resolution reconstruction approximate sparsity dictionary training
  • 相关文献

参考文献17

二级参考文献92

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2张月,马云,王伟,陈曾平.基于DSP的CCD天文图像处理系统[J].电光与控制,2005,12(4):47-50. 被引量:5
  • 3周春大,张岩.基于微位移技术提高CCD分辨率的方法[J].光子学报,2006,35(12):1969-1974. 被引量:11
  • 4Baker S,Kanade T. Limits on super resolution and how to break them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2002,24(9):1167-1183.
  • 5Park S C,Park M K,Kang M G. Super-resolution image reconstruction: A technical overview [J]. IEEE Signal Processing Magazine ,2003,20(3) : 1235-1240.
  • 6Moshe B E, Assaf Z, Shree K N. Jitter camera: a super-resolution video camera [J]. Visual Communications and Image Processing ,2006,6077(4): 1-13.
  • 7Ozkan M K, Sezan M I, Tekalp A M. Adaptive motion-compensated filtering of noisy image sequences [J]. IEEE Transactions on Circuits and Systems for Video Technology ,1993,3(4):277-290.
  • 8Segall C A, Molina, Katsaggelos R, et al. Signal high-resolution images from low-resolution compressed video [J]. IEEE Processing Magazine, 2003,20 (3) : 37-48.
  • 9Tsai R Y, Huang T S. Multi frame image restoration and registration [J]. Computer Vision and Image Processing, 1984,1(2) :317-339.
  • 10Baker S, Kanade T. Limits on super-resolution and how to break them [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2002,24(9) :1167-1183.

共引文献123

同被引文献204

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2卜莎莎,章毓晋.基于局部约束线性编码的单帧和多帧图像超分辨率重建[J].吉林大学学报(工学版),2013,43(S1):365-370. 被引量:3
  • 3刘卫光,崔江涛,周利华.插值和相位相关的图像亚像素配准方法[J].计算机辅助设计与图形学学报,2005,17(6):1273-1277. 被引量:29
  • 4BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces [C]. Proc. Conf. CGIT, 1999:187-194.
  • 5BASRI R, JACOBS D W. Lambertian reflectance and linear subspaces [J]. IEEE Trans. Patt. Anal. Mach. Intell., 2003, 25(2):218-233.
  • 6SHASHUA A, RIKLIN-RAVIV T. The quotient image: class-based re-rendering and recognition with varying illuminations [J]. IEEE Trans. Patt. Anal. Mach. Intell., 2001, 23(2): 129-139.
  • 7PEERS P, TAMURA N, MATUSIK W, et al. Post-production facial performance relighting using reflectance transfer [J]. ACM Trans. Graph., 2007, 26(3):10.
  • 8LI Q, YIN W, DENG Z. Image-based face illumination transferring using logarithmic total variation models [J]. The Visual Computer, 2010, 26(1): 41-49.
  • 9CHEN J, SU G, HE J, et al. Face image relighting using locally constrained global optimization [C]. Proc. ECCV, 2010: 44-57.
  • 10CHEN X, WU H, JIN X, et al. Face illumination manipulation using a single reference image by adaptive layer decomposition [J]. IEEE Transactions on Image Processing, 2013, 22(11): 4249-4259.

引证文献22

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部