期刊文献+

双材料平面中曲线裂纹问题的超奇异积分方程 被引量:1

HYPER-SINGULAR INTEGRAL EQUATIONS FOR CURVE CRACK IN BI-MATERIAL PLANE
在线阅读 下载PDF
导出
摘要 基于超奇异积分方程法的基本原理,导出了双材料平面中一般曲线裂纹问题以裂纹岸位移间断为基本未知量的超奇异积分方程组,其奇异积分含一类二阶超奇异积分和一类反映裂纹曲率影响的高斯型奇异积分,正常积分项中也含一类可用幂级数表达的曲率影响项。所得结果使超奇异积分方程法对双材料平面中一般曲线裂纹问题的描述更具一般性。该方程组在曲率半径趋于无穷大和取为定值情况下的退化结果也与关于直线裂纹和圆弧裂纹的已有结果有很好的一致性。针对圆弧裂纹的算例表明,所得方程组适用于曲线裂纹问题的数值计算。 Based on the basic principles of the hyper-singular integral equation method, the hyper-singular integral equations on the curve crack in bi-material plane were derived, with the crack shore displacement discontinuity being the basic unknown. These singular integrals contained a class of second-order hyper-singular integrals, and Gauss singular integrals, which reflected the influence of crack curvature. The normal integrals also contained a class of items which were affected by the curvature and expressed as power series. The result enabled hyper-singular integral equation method to be more suitable for description of the general crack in bi-material plane. When the curvature radius was taken the value of infinity or constant, the corresponding results were in good agreement with existed result on the straight crack or are crack. The numerical examples show that the derived result is suitable for the numerical calculation for curve cracks.
出处 《机械强度》 CAS CSCD 北大核心 2014年第3期445-448,共4页 Journal of Mechanical Strength
基金 河南省教育厅自然科学基金项目(2009B130004)~~
关键词 曲线裂纹 双材料 超奇异积分方程 Curve crack Bi-material Hyper-singular integral equation
  • 相关文献

参考文献15

  • 1Heitzer J, Mattheck C. Fem-calculatian of the stress intensity factors of a circular arc crack under uniaxial tension [ J ]. Engineering Fracture Mechanics 1989 ; 33 ( 1 ) :91-104.
  • 2Lorentzon M, Eriksson K. A path independent integral for the crack extension force of the circular arc crack [ J ]. Engineering Fracture Mechanics 2000 ; 66 : 423-439.
  • 3Chen Y Z. Complex potentials and singular integral equation for curve crack problem in antiplane elasticity [ J ]. International Journal of Engineering Science 2000; 38 : 565-574.
  • 4Shen Dawei, Fan Tianyuu. Semi-inverse method fur solving circular arc crack problems[ J]. Engineering Fracture Mechanics 2004 ; 71 : 1705-1724.
  • 5Yan Xiangqiao. A boundary, element analysis intensity factors of multiple circular arc cracks in a plane elasticity plate [ J ]. Applied Mathematical Modelling 2010 ; 34 : 2722-2737.
  • 6Kutt H R. The numerical evaluation of priciple value integrals by finite-part integration [ J ]. Numerical Mathematics 1975 ; 24 : 205- 210.
  • 7Ioakimids N I. A natural approach to the introduction of finite-part integrals into crack problems of 3-dimensional elasticity [ J ]. Engng Fract Mcch 1982; 16: 669-673.
  • 8Ioakimids N I. Application of finite-part integrals to the singular integral equations of crack problems in plane and 3-dimensional elasticity[J]. Acta Mech 1987; 26:783 -788.
  • 9Kaya A C, Erdoyan F. On the solution of integral equations with strongly singular kenels[ J] , Appl Math 1987; 105-122.
  • 10Chart Youn-sha, Fannjiang A. C, Paulino G.H. Intergral equations with hypersingular kernels-theory and applications to fracture mechanics[ J]. International Journal of Engineering Science 2003; 41 : 683-720.

二级参考文献17

  • 1乐金朝,杜云海,万强,朱秋菊.双材料平面多裂纹问题的超奇异积分方程方法[J].岩石力学与工程学报,2004,23(22):3834-3839. 被引量:4
  • 2刘喜明,沈平,宫文彪.SZL4-13锅炉水冷壁管环向裂纹产生原因分析[J].吉林工学院学报(自然科学版),1996,17(1):1-4. 被引量:3
  • 3Dundurs J, Hetenyi M. The elastic plane with a circular insert, loaded by a radial force. J. Appl. Mech., 1961, (1): 103 ~ 112.
  • 4Hetenyi M, Dundurs J. The elastic plane with a circular insert, loaded by atangentially directed force. J. Appl. Mech. , 1962, (2) :362 ~ 368.
  • 5乐金朝 冯新 韩连元.双材料平面裂纹问题的超奇异积分方程方法[J].固体力学学报,1999,20:34-37.
  • 6Wang X D, Meguid S A. On the general treatment of an oblique crack near a bi-material interface under antiplane loading. International Journal of Solids and Structures, 1996, 33(17) :2485 ~ 2500.
  • 7Ioakimids N I.A natural approach to the introduction of finite-part integrals into crack problems of 3-dimensional elasticity.Eng.Fracture Meck.,1982,16:669~673.
  • 8Ioakimids N I.Application of finite-part integrals to the singular integral equations of crack problems in plane and 3-dimensional elasticity.ActaMech.,1897,26:783~788.
  • 9Dundurs J,Hetenyi M.The elastic plane with a circular insert,loaded by a radial force.J.Appl.Mech.,1961,(1):103~112.
  • 10Hetenyi M,Dundurs J.The elastic plane with a circular insert,loaded by a Tangentially directed force.J.Appl.Mech.,1962,(2):362~368.

共引文献7

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部